Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual human in HIV drug simulation

30.01.2008
The combined supercomputing power of the UK and US ‘national grids’ has enabled UCL (University College London) scientists to simulate the efficacy of an HIV drug in blocking a key protein used by the lethal virus. The method – an early example of the Virtual Physiological Human in action – could one day be used to tailor personal drug treatments, for example for HIV patients developing resistance to their drugs.

The study, published online today in the Journal of the American Chemical Society, ran a large number of simulations to predict how strongly the drug saquinavir would bind to three resistant mutants of HIV-1 protease, a protein produced by the virus to propagate itself. These protease mutations are associated with the disease’s resistance to saquinavir, an HIV-inhibitor drug.

The study, by Professor Peter Coveney and colleagues at the UCL Department of Chemistry, involved a sequence of simulation steps, performed across several supercomputers on the UK’s National Grid Service and the US TeraGrid, which took two weeks and used computational power roughly equivalent to that needed to perform a long-range weather forecast.

The idea behind the Virtual Physiological Human (VPH) is to link networks of computers across the world to simulate the internal workings of the human body. The VPH – mainly a research initiative at present – allows scientists to simulate the effects of a drug and see what is happening at the organ, tissue, cell and molecular level.

Although nine drugs are currently available to inhibit HIV-1 protease, doctors have no way of matching a drug to the unique profile of the virus as it mutates in each patient. Instead, they prescribe a course of drugs and then test whether these are working by analysing the patient’s immune response. One of the goals of VPH is for such ‘trial and error’ methods to eventually be replaced by patient-specific treatments tailored to a person’s unique genotype.

Professor Peter Coveney says: “This study represents a first step towards the ultimate goal of ‘on-demand’ medical computing, where doctors could one day ‘borrow’ supercomputing time from the national grid to make critical decisions on life-saving treatments.

“For example, for an HIV patient, a doctor could perform an assay to establish the patient’s genotype and then rank the available drugs’ efficacy against that patient’s profile based on a rapid set of large-scale simulations, enabling the doctor to tailor the treatment accordingly.

“We have some difficult questions ahead of us, such as how much of our computing resources could be devoted to helping patients and at what price. At present, such simulations – requiring a substantial amount of computing power – might prove costly for the National Health Service, but technological advances and those in the economics of computing would bring costs down.”

For the moment, Professor Coveney’s group is continuing to look at all the protease inhibitors in a similar way. The VPH initiative, now underway with 72 million euros of initial funding from the EU, will boost collaboration between clinicians and scientists to explore the scope for patient-specific medical treatments based on modern modelling and simulation methods.

Jenny Gimpel | alfa
Further information:
http://www.ucl.ac.uk
http://www.ucl.ac.uk/media/library/HIVcomputing

More articles from Information Technology:

nachricht Controlling robots with brainwaves and hand gestures
20.06.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Innovative autonomous system for identifying schools of fish
20.06.2018 | IMDEA Networks Institute

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>