Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress with the switch to faster computers

11.10.2013
A specialized switch that controls light can regulate the flow of optical data at a speed suitable to accelerate computers

Long-distance communication increasingly relies on networks of fiber-optic cables that carry data encoded in nimble beams of light. Conventional computer circuits, however, still use relatively sluggish electronic circuits to process this data.

Hong Cai of the A*STAR Institute of Microelectronics in Singapore and her co-workers have now developed a device that could help computers reach light speed. Their tiny mechanical system can switch a light signal on or off extremely quickly, potentially enabling all-optical computing and simplifying the interface between electronic and optical networks1. “All-optical devices could enable a large number of components to be housed on a single chip,” says Cai.

Various optical switching technologies already exist, including microelectromechanical systems (MEMS). These switches, however, take microseconds to flip from one state to another, far too slow for a computer application. Cai’s device is a much smaller nanoelectromechanical system (NEMS) that can switch in billionths of a second, with virtually no data loss.

“NEMS optical switches offer the potential for fast switching speed, low optical loss and low power consumption. And, they are easily integrated in large-scale arrays without complex packaging techniques,” says Cai.

The researchers etched their device from a thin sheet of silicon, forming a flexible ring 60 micrometers wide that is connected to a central pillar by four thin spokes. Two channels running through the underlying silicon skim past opposite edges of the ring; they act as waveguides for two beams of light. These channels pass no closer than 200 nanometers from the ring (see image).

When light carrying a signal passes through one of the channels, the light’s electromagnetic field establishes resonant oscillations around the ring. This draws energy from the beam and prevents the data from travelling any further — the switch is effectively ‘off’.

To flip the switch, a low-power beam of 10 milliwatts traveling along the other channel establishes a similar resonance that slightly warps the ring, bending its edges downwards by just a few nanometers. This warping motion changes the resonant frequency of the ring, preventing it from coupling to the signal beam and allowing the data to continue unimpeded. Switching the signal on took just 43.5 nanoseconds, and the researchers observed a large difference in signal light output between the ‘on’ and ‘off’ states.

“As such, a low-power optical signal can be used to modulate a high-power optical signal at high speed,” says Cai. Her team is now working on integrating the devices into circuits.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

Cai, H., Dong, B., Tao, J. F., Ding, L., Tsai, J. M. et al. A nanoelectromechanical systems optical switch driven by optical gradient force. Applied Physics Letters 102, 023103 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>