Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New models and better data for macromolecular structure determination


The structures of proteins, RNA and DNA are the key to our understanding of life. These structures are measured with X-ray or neutron diffraction, but the data are rarely perfect. Researchers at the University of Würzburg are now developing a new software to analyse this data.

For over 50 years, X-ray crystallography has been the foremost method for the determination of three dimensional structures of biological macromolecules.

Dr. Andrea Thorn, University of Würzburg (JMU)

(Foto: Diefenbacher, Rudolf Virchow Center)

The method has revolutionized biochemistry, allowing a fundamental insight into the chemistry of living cells, and enabling the development of new drugs and vaccines.

To obtain such a structural model, a crystal (of DNA, for example) is irradiated with neutrons or X-rays, and the diffracted radiation is recorded with a detector. With these diffraction data, a three dimensional model of the molecule is constructed to explain the measured data as well as possible.

Consequently, the quality of diffraction data and this knowledge determine the quality of the molecular structure and all biological or medicinal insights it may offer.

In recent years, large sums have been invested for this technology both in Germany and in Europe, including the 3.4 km long European X-Ray Free Electron Laser (EuXFEL) in Hamburg.

These innovations drastically increased the speed of measurements and amplified the amount of data available for structure solutions.

“However, in order to exploit this wealth of data, we need reliable automatic analysis, that give users direct feedback about their measurements,” stresses Dr. Andrea Thorn.

To tackle this challenge, the junior group leader in the research lab of Prof. Hermann Schindelin at the Rudolf-Virchow Center for Experimental Biomedicine (University of Würzburg) is currently developing a new computer program called AUSPEX (

This software will help crystallographers to optimize both their measurements as well as data processing. In May of this year, the Federal Ministry for Research and Education (BMBF) agreed to fund this project, which allows Thorn to bring together collaborators from four major European crystallography facilities: the European Free X-ray Laser EuXFEL in Hamburg, the BESSY synchrotron facility in Berlin, the European Synchrotron Radiation Facility in Grenoble (France) and the European Spallation Source (ESS) in Lund (Sweden). The researchers anticipate that new quality standards will be set for diffraction data measured at these (and other) facilities.

In a second project, funded by the DFG since June 2019, Thorn improves our basic understanding of the chemical and physical makeup of macromolecular crystals in order to improve the models used to build protein, DNA and RNA structures.

„A better understanding of the fundamental principles allows us to better interpret the data we measure in our experiments, “ says Thorn. “It allows us to solve structures where data quality and our models failed previously. In addition, with better modelling, we can potentially improve the over 100 000 already known macromolecular structures – and get more biological and medicinal answers.“

According to the structural biologist, better molecular models and higher data quality will allow scientists to fully exploit the information content of the measurements, not only in order to answer more challenging biological questions, but also to significantly improve downstream methods such as molecular dynamics and structure-based drug design.

The first prototype of AUSPEX is available on the web server of the Rudolf-Virchow Center at It will also be available to the European user community as part of the pipelines ISPyB, XDSAPP and the software suite CCP4.


Dr. Andrea Thorn is a junior group leader in the lab of Prof. Dr. Hermann Schindelin at the Rudolf-Virchow Center for Experimental Biomedicine of the University of Würzburg.

Prof. Dr. Hermann Schindelin is professor for structural biology and biochemistry and runs a research group at the Rudolf-Virchow Center for Experimental Biomedicine of the University of Würzburg since 2006.

Wissenschaftliche Ansprechpartner:

Dr. Andrea Thorn (AG Schindelin, Rudolf Virchow Center)
Tel. +49 (0)931 31 83677,

Prof. Dr. Hermann Schindelin (Rudolf Virchow Center)
Tel. +49 (0)931 31 80382,


„New Diagnostics for Macromolecular Structure Determination at Large Facilities: AUSPEX”
Funded by the German Federmal Ministry for Science and Education (BMBF)
Subsidy amount: 448 493 € - one postdoc position
Project start: 1. Juli 2019

„Towards a better understanding of macromolecular X-ray structures“
Funded by the Deutsche Forschungsgemeinschaft (DFG)
Subsidy amount: 494 722 € - Dr. Thorn’s position and one PhD student
Project start: 1. Juni 2019

Weitere Informationen:

Dr. Daniela Diefenbacher | idw - Informationsdienst Wissenschaft
Further information:

More articles from Information Technology:

nachricht Reorganizing a computer chip: Transistors can now both process and store information
10.12.2019 | Purdue University

nachricht New software tool uses AI to help doctors identify cancer cells
10.12.2019 | UT Southwestern Medical Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

All Focus news of the innovation-report >>>



Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

Latest News

City research draws on Formula 1 technology for the construction of skyscrapers

10.12.2019 | Architecture and Construction

Reorganizing a computer chip: Transistors can now both process and store information

10.12.2019 | Information Technology

Could dark carbon be hiding the true scale of ocean 'dead zones'?

10.12.2019 | Life Sciences

Science & Research
Overview of more VideoLinks >>>