Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light and heat boost memory capacity

14.02.2014
Adding carbon gives iron-platinum nanocrystals the ideal optical properties for heat-assisted magnetic recording

The disk drive in a computer works by using a magnetic field to change the physical properties of a tiny volume of a magnetically susceptible material. Current research aims to develop novel materials and technologies that can maximize storage capacity by focusing data into the smallest possible volume.

Now, Zhanhong Cen and co-workers at the A*STAR Data Storage Institute in Singapore have experimentally and theoretically investigated the properties of iron-Cplatinum (FePt) nanocrystals for use in ultrahigh-density magnetic recording media. They show that, as well as having the appropriate magnetic characteristics, the optical response of FePt is suitable for high-performance data-storage applications and that the use of pulses of laser light improves the magnetic recording process1.

"Decreasing the size of magnetic particles makes the magnetic information become thermally unstable due to an effect called superparamagnetism," explains Cen. "FePt nanoparticles are very promising, because for these nanoparticles, superparamagnetism is suppressed at room temperature."

But FePt nanoparticles also have a drawback - the magnetic field required for writing data is much higher than that produced by present disk drives. While the magnetic-field intensity necessary for a change of state could potentially be reduced by locally heating the material with a pulse of light - a process called heat-assisted magnetic recording, little was known about the optical response of FePt until now.

Cen and the team created thin-film samples using a process known as sputtering, which involves firing a beam of particles at a FePt alloy to release iron and platinum atoms. The atoms land on a glass substrate covered with a layer of magnesium oxide where they form crystals. The team sputtered carbon at the same time to form a single layer of FePt nanocrystals 15 nanometers in diameter and 9.1 nanometers tall embedded in a film of carbon.

For comparison, the team also created a nanocrystal sample without carbon and probed the refractive index and absorption of the two samples with both visible and near-infrared light. The researchers used these values in a computer model to simulate the performance of the material in a heat-assisted magnetic recording device. The sample doped with carbon came out on top.

"Our simulations show that introducing carbon into a FePt nanocomposite can improve optical performance," says Cen. "Ultimately, a FePt-carbon recording medium will perform better than current storage options, because it will use a smaller optical spot on the recording media and enable more energy-efficient writing and reading of data."

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Journal information

Cen, Z. H., Xu, B. X., Hu, J. F., Li, J. M., Cher, K. M. et al. Optical property study of FePt-C nanocomposite thin film for heat-assisted magnetic recording. Optics Express 21, 9906¨C9914 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Safer viruses for vaccine research and diagnosis

12.12.2019 | Health and Medicine

NTU Singapore scientists convert plastics into useful chemicals using su

12.12.2019 | Life Sciences

Studies show integrated strategies work best for buffelgrass control

12.12.2019 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>