Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cyberinfrastructure to Meet Peak Demand for Emergency Data in Rural Areas

23.03.2011
Ahead of the next fire season in parched areas of southern California, research groups at the University of California, San Diego are building a scalable computer infrastructure to provide better access to camera feeds from rural areas when fires, earthquakes, flash floods or other natural disasters hit San Diego County.

“San Diegans need somewhere to turn when a natural disaster hits a rural area nearby, in order to make better decisions about what to do next,” said Hans-Werner Braun, a research scientist at the San Diego Supercomputer Center (SDSC) and director of its Applied Network Research group, which operates the High Performance Wireless Research and Education Network (HPWREN).

“Until now we have been able to provide that service covering large parts of San Diego’s back-country, but now we need to ensure that during the next crisis, peak demand for our data will not swamp our ability to keep the camera feeds up and running.”

The UC San Diego division of the California Institute for Telecommunications and Information Technology (Calit2) and the National Science Foundation-funded HPWREN are partnering on the new project.

“Calit2 is enriching situational awareness in rural San Diego not just for those who live there, as well as their friends and family elsewhere, but also for emergency responders who need to know the situation on the ground before they arrive on the scene,” said Calit2 director Larry Smarr. “HPWREN is a tremendous asset, and with Calit2 providing a more scalable data server architecture and backend with additional hardware, the network can serve the needs of many more people and agencies – not just during wildfires, but in other emergencies as well.”

Approximately 1,000 people visit HPWREN’s web page to view camera feeds on a typical day. On a not-so-typical day – like when snow recently blanketed large swathes of rural San Diego mountaintops – the number of visitors quadrupled.

Braun compares that with what happened during the 2007 Harris Fire. “We ended up at the peak with roughly 50,000 visitors in a single day, and they downloaded more than 70 gigabytes of data from a single server,” he said. “Keep in mind that every page visit may return 30, 40 or 50 items, or ‘hits’, so those peak loads can overwhelm a server. We know that a lot of people were unable to get through on their first try, so they had to keep trying if it was critical to know how far the flames had spread, and to know whether their homes were in the line of fire. It’s very hard to optimize for a system that can jump up to 50 times normal daily users for brief periods of time – and you don’t know which day the disaster will strike."

After HPWREN partnered last October with the County of San Diego and Calit2 on the FireSight project (http://www.calit2.net) to deploy new cameras on Mt. Woodson, Red Mountain (near Fallbrook) and elsewhere, it became clear that enhancing the camera network was not enough. It had to be able to withstand an onslaught of visitors to the website.

Calit2 proposed to HPWREN’s Braun that the institute dedicate server hardware from its NSF-funded GreenLight project (http://greenlight.calit2.net) to handle the peak loading. The project would also help the GreenLight project by providing another application type that can be tracked for its energy usage. Noted GreenLight principal investigator Tom DeFanti: “We were able to spend significant GreenLight funds for this because of the opportunity for energy monitoring of at-scale, broad-interest services.”

The solution devised by Calit2 engineers, including Greg Hidley, Brian Dunne, Joe Keefe and Chris Misleh, is fully scalable, and robust enough to handle any foreseeable response to wildfires or other visible hazards. “The HPWREN and GreenLight teams developed a strategy to improve access to HPWREN camera data,” said Hidley, chief engineer on the GreenLight project. “Our team put together an infrastructure upgrade implementation plan for this strategy designed to improve performance, control and reliability of HPWREN data access as well as provide improved infrastructure reliability and data redundancy.”

The hardware provided and set up by Calit2 includes multiple Sun SunFire 4540 high-performance storage servers (Thumpers), multiple 10 Gigabits-per-second network paths to Calit2 HPWREN data, as well as an A10 Load Balancer, with RAM Cache, compression offloads, TCP optimizations and simultaneous connectivity to multiple resource servers.

Some of the most vivid images used on local TV broadcasts during the Harris Fire were from HPWREN’s cameras, most of which are refreshed every two minutes. HPWREN can then string together those images to create time-lapse animations of the progress of a fire over time. In the Harris Fire, neighborhood blogs in the Jamul area that linked to HPWREN’s camera feeds were a lifeline, especially at times when local TV crews were not on the scene. As local resident Tom Dilatus told a writer, the cameras were what kept people in his neighborhood sane: “They were the only reliable source of information about where the fire was burning.”

For now, HPWREN will continue to host content on its original server, while the scalable server complex at Calit2 hosts a mirror site.

Calit2 copies HPWREN content from HPWREN cameras via iRODS, a second-generation data grid system, to a Calit Sun Thumper, which then replicates it on three other Thumpers (two in Calit2’s server room in Atkinson Hall, and one in GreenLight’s SunMD modular datacenter adjacent to the School of Pharmacy and Pharmaceutical Sciences).

All the Thumpers are running on the NSF-funded, Calit2-led OptIPuter (http://www.optiputer.net/) ultra-broadband network linking major research buildings on the UCSD campus. Web servers have been setup on the Thumpers and the A10 load balancer was installed to distribute web requests across multiple servers. “In addition to pulling content from multiple servers, increasing speed and availability,” explained Hidley, “the load balancer can optimize TCP traffic as well as provide caching and data-compression offloading to improve performance. The load balancer can also prioritize user requests via IP addresses, giving access priority and predictable response to emergency responders.”

The new cyberinfrastructure should be able to respond to hundreds of thousands of visitors, and scale even higher on a moment’s notice with the addition of new Thumpers.

“It’s not just creating redundancy in the system or playing the role of backup, although that is part of it in the short run,” said Braun. “Scalable servers are much better able to distribute the content, so over time the scalable system will eventually become the main site.”

The launch announced today is a beta deployment of the system, but consumers can already visit the site and download data. The engineers still want to put the system through its paces while mimicking the load factors to be expected in a large-scale disaster scenario. “We are finalizing the stress testing on a portion of the back end,” said Calit2’s Joe Keefe. “We are currently in a staging phase, and we should be able to fully test a complete load balancing structure very soon.”

“We expect significant improvement in performance, especially during large-scale events,” concluded HPWREN’s Braun. “Eventually we look forward to integrating more environmental sensors, not just cameras, into the network. We could integrate various other kinds of environmental sensors to present a collated view of complex situations. Examples are water and air quality, meteorological data, and seismic data. Many such sensors are already in operation on HPWREN.”

Doug Ramsey | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
17.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>