Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer program looks five minutes into the future

13.06.2018

Computer scientists from the University of Bonn have developed software that can look a few minutes into the future: The program first learns the typical sequence of actions, such as cooking, from video sequences. Based on this knowledge, it can then accurately predict in new situations what the chef will do at which point in time. Researchers will present their findings at the world's largest Conference on Computer Vision and Pattern Recognition, which will be held June 19-21 in Salt Lake City, USA.

The perfect butler, as every fan of British social drama knows, has a special ability: He senses his employer’s wishes before they have even been uttered. The working group of Prof. Dr. Jürgen Gall wants to teach computers something similar: “We want to predict the timing and duration of activities - minutes or even hours before they happen”, he explains.


When will you do what? Prof. Jürgen Gall (right) and Yazan Abu Farha from the Institute of Computer Science at the University of Bonn.

© Photo: Barbara Frommann/Uni Bonn

A kitchen robot, for example, could then pass the ingredients as soon as they are needed, pre-heat the oven in time - and in the meantime warn the chef if he is about to forget a preparation step. The automatic vacuum cleaner meanwhile knows that it has no business in the kitchen at that time, and instead takes care of the living room.

We humans are very good at anticipating the actions of others. For computers however, this discipline is still in its infancy. The researchers at the Institute of Computer Science at the University of Bonn are now able to announce a first success: They have developed self-learning software that can estimate the timing and duration of future activities with astonishing accuracy for periods of several minutes.

Training data: four hours of salad videos

The training data used by the scientists included 40 videos in which performers prepare different salads. Each of the recordings was around 6 minutes long and contained an average of 20 different actions. The videos also contained precise details of what time the action started and how long it took.

The computer “watched” these salad videos totaling around four hours. This way, the algorithm learned which actions typically follow each other during this task and how long they last. This is by no means trivial: After all, every chef has his own approach. Additionally, the sequence may vary depending on the recipe.

“Then we tested how successful the learning process was”, explains Gall. “For this we confronted the software with videos that it had not seen before.” At least the new short films fit into the context: They also showed the preparation of a salad. For the test, the computer was told what is shown in the first 20 or 30 percent of one of the new videos. On this basis it then had to predict what would happen during the rest of the film.

That worked amazingly well. Gall: “Accuracy was over 40 percent for short forecast periods, but then dropped the more the algorithm had to look into the future.” For activities that were more than three minutes in the future, the computer was still right in 15 percent of cases. However, the prognosis was only considered correct if both the activity and its timing were correctly predicted.

Gall and his colleagues want the study to be understood only as a first step into the new field of activity prediction. Especially since the algorithm performs noticeably worse if it has to recognize on its own what happens in the first part of the video, instead of being told. Because this analysis is never 100 percent correct - Gall speaks of “noisy” data. “Our process does work with it”, he says. “But unfortunately nowhere near as well.”

The study was developed as part of a research group dedicated to the prediction of human behavior and financially supported by the German Research Foundation (DFG).

Publication: Yazan Abu Farha, Alexander Richard and Jürgen Gall: When will you do what? - Anticipating Temporal Occurrences of Activities. IEEE Conference on Computer Vision and Pattern Recognition 2018; http://pages.iai.uni-bonn.de/gall_juergen/download/jgall_anticipation_cvpr18.pdf

Sample test videos and predictions derived from them are available at https://www.youtube.com/watch?v=xMNYRcVH_oI

Contact:

Prof. Dr. Jürgen Gall
Institute of Computer Science
University of Bonn
Tel. +49(0)228/7369600
E-mail: gall@informatik.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Information Technology:

nachricht A platform for stable quantum computing, a playground for exotic physics
06.12.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Developing a digital twin
06.12.2019 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>