Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer program looks five minutes into the future

13.06.2018

Computer scientists from the University of Bonn have developed software that can look a few minutes into the future: The program first learns the typical sequence of actions, such as cooking, from video sequences. Based on this knowledge, it can then accurately predict in new situations what the chef will do at which point in time. Researchers will present their findings at the world's largest Conference on Computer Vision and Pattern Recognition, which will be held June 19-21 in Salt Lake City, USA.

The perfect butler, as every fan of British social drama knows, has a special ability: He senses his employer’s wishes before they have even been uttered. The working group of Prof. Dr. Jürgen Gall wants to teach computers something similar: “We want to predict the timing and duration of activities - minutes or even hours before they happen”, he explains.


When will you do what? Prof. Jürgen Gall (right) and Yazan Abu Farha from the Institute of Computer Science at the University of Bonn.

© Photo: Barbara Frommann/Uni Bonn

A kitchen robot, for example, could then pass the ingredients as soon as they are needed, pre-heat the oven in time - and in the meantime warn the chef if he is about to forget a preparation step. The automatic vacuum cleaner meanwhile knows that it has no business in the kitchen at that time, and instead takes care of the living room.

We humans are very good at anticipating the actions of others. For computers however, this discipline is still in its infancy. The researchers at the Institute of Computer Science at the University of Bonn are now able to announce a first success: They have developed self-learning software that can estimate the timing and duration of future activities with astonishing accuracy for periods of several minutes.

Training data: four hours of salad videos

The training data used by the scientists included 40 videos in which performers prepare different salads. Each of the recordings was around 6 minutes long and contained an average of 20 different actions. The videos also contained precise details of what time the action started and how long it took.

The computer “watched” these salad videos totaling around four hours. This way, the algorithm learned which actions typically follow each other during this task and how long they last. This is by no means trivial: After all, every chef has his own approach. Additionally, the sequence may vary depending on the recipe.

“Then we tested how successful the learning process was”, explains Gall. “For this we confronted the software with videos that it had not seen before.” At least the new short films fit into the context: They also showed the preparation of a salad. For the test, the computer was told what is shown in the first 20 or 30 percent of one of the new videos. On this basis it then had to predict what would happen during the rest of the film.

That worked amazingly well. Gall: “Accuracy was over 40 percent for short forecast periods, but then dropped the more the algorithm had to look into the future.” For activities that were more than three minutes in the future, the computer was still right in 15 percent of cases. However, the prognosis was only considered correct if both the activity and its timing were correctly predicted.

Gall and his colleagues want the study to be understood only as a first step into the new field of activity prediction. Especially since the algorithm performs noticeably worse if it has to recognize on its own what happens in the first part of the video, instead of being told. Because this analysis is never 100 percent correct - Gall speaks of “noisy” data. “Our process does work with it”, he says. “But unfortunately nowhere near as well.”

The study was developed as part of a research group dedicated to the prediction of human behavior and financially supported by the German Research Foundation (DFG).

Publication: Yazan Abu Farha, Alexander Richard and Jürgen Gall: When will you do what? - Anticipating Temporal Occurrences of Activities. IEEE Conference on Computer Vision and Pattern Recognition 2018; http://pages.iai.uni-bonn.de/gall_juergen/download/jgall_anticipation_cvpr18.pdf

Sample test videos and predictions derived from them are available at https://www.youtube.com/watch?v=xMNYRcVH_oI

Contact:

Prof. Dr. Jürgen Gall
Institute of Computer Science
University of Bonn
Tel. +49(0)228/7369600
E-mail: gall@informatik.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Information Technology:

nachricht Spintronics: Faster data processing through ultrashort electric pulses
02.07.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Multi-sensor system for the precise and efficient inspection of roads, railways and similar assets
01.07.2020 | Fraunhofer IPM

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>