Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting the Big Picture Quickly with Speedy Software

28.10.2010
Software Edits Huge Images in Seconds Instead of Hours

University of Utah computer scientists developed software that quickly edits “extreme resolution imagery” – huge photographs containing billions to hundreds of billions of pixels or dot-like picture elements. Until now, it took hours to process these “gigapixel” images. The new software needs only seconds to produce preview images useful to doctors, intelligence analysts, photographers, artists, engineers and others.

By sampling only a fraction of the pixels in a massive image – for example, a satellite photo or a panorama made of hundreds of individual photos – the software can produce good approximations or previews of what the fully processed image would look like.

That allows someone to interactively edit and analyze massive images – pictures larger than a gigapixel (billion pixels) – in seconds rather than hours, says Valerio Pascucci, an associate professor of computer science at the University of Utah and its Scientific Computing and Imaging (SCI) Institute.

“You can go anywhere you want in the image,” he says. “You can zoom in, go left, right. From your perspective, it is as if the full ‘solved’ image has been computed.”

He compares the photo-editing software with public opinion polling: “You ask a few people and get the answer as if you asked everyone. It’s exactly the same thing.”

The new software – Visualization Streams for Ultimate Scalability, or ViSUS – allows gigapixel images stored on an external server or drive to be edited from a large computer, a desktop or laptop computer, or even a smart phone, Pascucci says.

“The same software runs very well on an iPhone or a large computer,” he adds.

A study describing development of the ViSUS software is scheduled for online publication Saturday, Oct. 30 in the world’s pre-eminent computer graphics journal, ACM Transactions on Graphics, published by the Association for Computing Machinery.

The paper calls ViSUS “a simple framework for progressive processing of high-resolution images with minimal resources … [that] for the first time, is capable of handling gigapixel imagery in real time.”

Pascucci conducted the research with University of Utah SCI Institute colleagues Brian Summa, a doctoral student in computing; Giorgio Scorzelli, a senior software developer; and Peer-Timo Bremer, a computer scientist at Lawrence Livermore National Laboratory in California, where co-author Ming Jiang also works.

The research was funded by the U.S. Department of Energy and the National Science Foundation. The University of Utah Research Foundation and Lawrence Livermore share a patent on the software, and the researchers plan to start a company to commercialize ViSUS.

From Atlanta to Atlantis – and Stitching Salt Lake City

Pascucci defines massive imagery as images containing more than one gigapixel –which is equal to 100 photos from a 10-megapixel (10 million pixel) digital camera.

In the study, the computer scientists used a number of images ranging in size from megapixels (millions of picture elements) to hundreds of gigapixels to test how well the ViSUS software let them interactively edit large images, and to show how well the software can handle images of various sizes, from small to extremely large.

In one example, they used the software to perform “seamless cloning,” which means taking one image and merging it with another image. They combined a 3.7-gigapixel image of the entire Earth with a 116-gigapixel satellite photo of the city of Atlanta, zooming in on the Gulf of Mexico and putting Atlanta underwater there.

“An artist can interactively place a copy of Atlanta under shallow water and recreate the lost city of Atlantis,” says the new study, which is titled, “Interactive Editing of Massive Imagery Made Simple: Turning Atlanta into Atlantis.”

“It’s just a way to demonstrate how an artist can manipulate a huge amount of data in an image without being encumbered by the file size,” says Pascucci.

Pascucci, Summa and colleagues also used a camera mounted on a robotic panning device and placed atop a University of Utah building to take 611 photographs during a six-hour period. Together, the photos covered the entire Salt Lake Valley.

At full resolution, it took them four hours to do “panorama stitching,” which is stitching the mosaic of photos together into a 3.27-gigapixel panorama of the valley that eliminated the seams between the images and differences in their exposures, says Summa, first author of the study.

But using the ViSUS software, it took only two seconds to create a “global preview” of the entire Salt Lake panorama that looked almost as good – and had a relatively low resolution of only 0.9-megapixels, or only one-3,600th as much data as full-resolution panorama.

And that preview image is interactive, so a photo editor can make different adjustments – such as tint, color intensity and contrast – and see the effects in seconds.

Pascucci says ViSUS’ significance is not in creating the preview, but in allowing an editor to zoom in on any part of the low-resolution panorama and quickly see and edit a selected portion of it at full resolution. Older software required the full resolution image to be processed before it could be edited.

Uses for Quick Editing of Big Pictures

Pascucci says the method can be used to edit medical images such as MRI and CT scans – and can do so in three dimensions, even though their study examined only two-dimensional images. “We can handle 2-D and 3-D in the same way,” he says.

The software also might lead to more sophisticated computer games. “We are studying the possibility of involving the player in building their own [gaming] environment on the fly,” says Pascucci.

The software also will be useful to intelligence analysts examining satellite photos, and researchers using high-resolution microscopes, for example, to study how the eye’s light-sensing retina is “wired” by nerves, based on detailed microscopic images.

An intelligence analyst may need to compare two 100-gigabyte satellite photos of the same location but taken at different times – perhaps to learn if aircraft or other military equipment arrived or left that location between the times the photos were taken.

Conventional software to compare the photos must go through all the data in each photo and compare differences – a process that “would take hours. It might be a whole day,” Pascucci says. But with ViSUS, “we quickly build an approximation of the difference between the images, and allow the analyst to explore interactively smaller regions of the total image at higher resolution without having to wait.”

How it Works: Catching Some Zs

Pascucci says two key parts of the software must work together delicately:

-- “One is the way we store the images – the order in which we store the pixels on the disk. That is part of the technology being patented” because the storage format “allows you to retrieve the sample of pixels you want really fast.”

-- How the data are processed is the software’s second crucial feature. The algorithm – a set of formulas and rules – for processing image data allows the researchers to use only a subset of pixels, which they can move efficiently.

The image processing method can produce previews at various resolutions by taking progressively more and more pixels from the data that make up the entire full-resolution image.

Normally, the amount of memory used in a computer to edit and preview a massive image would have to be large enough to handle the entire data set for that image.

“In our method, the preview has constant size, so it can always fit in memory, even if the fine-resolution data keep growing,” Pascucci says.

Data for the full-resolution image is stored on a disk or drive, and ViSUS repeatedly swaps data with the disk as needed for creating new preview images as editing progresses. The software does that very efficiently by pulling more and more data subsets from the full image data in the form of progressively smaller Z-shaped sets of pixels.

Pascucci says ViSUS’ major contribution is that “we don’t need to read all the data to give you an approximation” of the full image.

If an image contained a terabyte of data – a trillion bytes – the software could produce a good approximation of the image using only one-millionth of the total image data, or about a megabyte, Pascucci says.

The computer scientists now have gone beyond the 116-gigapixel Atlanta image and, in unpublished work, have edited satellite images of multiple cities exceeding 500 gigapixels. The next target: a terapixel image – 1,000 gigapixels or 1 trillion pixels.

For more information on the Scientific Computing and Imaging Institute, see:
http://www.sci.utah.edu
For information on the University of Utah College of Engineering, see:
http://www.coe.utah.edu/
Contacts:
-- Valerio Pascucci, associate professor of computer science – cellular (801) 550-2471, office (801) 587-9885, pascucci@sci.utah.edu
-- Brian Summa, doctoral student in computer science – cellular (215) 605-3252, bsumma@sci.utah.edu
-- Lee Siegel, science news specialist, University of Utah Public Relations –
office (801) 581-8993, cellular (801) 244-5399, leesiegel@ucomm.utah.edu

Lee Siegel | Newswise Science News
Further information:
http://www.utah.edu

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>