Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All eyes on the conductor

16.02.2016

A ‘conductor’ that ensures simultaneous processing tasks keep time could dramatically increase the efficiency of ‘cloud’ simulations.

In large-scale simulations that involve simultaneous computational tasks on distributed computers, the overall speed of the simulation is limited by the slowest link. By adaptively redistributing computational resources in real-time according to workload, a Singapore-based research team have shown how to overcome this ‘slowest link’ limitation[1].


Copyright : W.Rebel via Wikimediacommons [https://commons.wikimedia.org/wiki/File:BinaryData50.png]

This approach could dramatically improve the speed and efficiency of simulations conducted across many computers — also called ‘cloud’ simulations.

“The problem of workload imbalance is very common in large-scale simulations, which involve a group of parallel distributed computers or ‘components’ that need to synchronize with each other to ensure that all simulation events are executed in time stamp order,” explains research leader Zengxiang Li, from the A*STAR Institute of High Performance Computing.

Parallel computing simulations involve a large number of events that must occur in order. These events are assigned to multiple parallel computing ‘nodes’ for simultaneous computation. When an event is processed, new events may be generated and inserted into the event processing queue. It is wasteful to let expensive computational resources lie idle waiting for work, so parallel processing schemes often allow each node to process events sequentially without waiting for events from other nodes.

The problem is that if events from one node are late, the other nodes proceeding with their ‘optimistic’ execution of the next event will need to discard their extra work and rollback to where the late node left off. “The entire simulation execution is held back by the slowest components,” says Li, “while faster components risk wasting time and resources on overoptimistic execution and execution rollbacks.”

To improve the efficiency of such simulations, Li and his colleagues developed a resource-conducting scheme called Adaptive Resource Provisioning Mechanism in Virtual Execution Environments, or ArmVee. This scheme sits transparently as middleware in the simulation environment to monitor workloads and task completion speeds on each node in real-time. ArmVee then dynamically reallocates resources, such as memory and processing cycles, to speed up the slowest links.

“We use a self-adaptive auto-regressive-moving-average model — commonly used in control theory — to capture the relationship between simulation performance and resources,” says Li. “This allows ArmVee to predict the dynamically changing simulation workload and to align the execution speeds of simulation components proactively so that each advances in simulation time with comparable speed.”

Importantly, ArmVee can be used transparently in standard simulation architectures without any simulation recoding or interruption. This makes it ready for implementation in standard parallel and distributed simulations.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

Reference

[1] Li, Z., Cai, W., Turner, S. J., Li, X., Duong, T. N. B., Goh, R. S. M. Adaptive resource provisioning mechanism in VEEs for improving performance of HLA-based simulations. ACM Transactions on Modeling and Computer Simulation 26, 1 (2015).


Associated links
Original article from Agency for Science, Technology and Research

A*STAR Research | Research SEA
Further information:
http://www.researchsea.com

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades

25.06.2019 | Architecture and Construction

An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening

25.06.2019 | Life Sciences

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>