Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All eyes on the conductor

16.02.2016

A ‘conductor’ that ensures simultaneous processing tasks keep time could dramatically increase the efficiency of ‘cloud’ simulations.

In large-scale simulations that involve simultaneous computational tasks on distributed computers, the overall speed of the simulation is limited by the slowest link. By adaptively redistributing computational resources in real-time according to workload, a Singapore-based research team have shown how to overcome this ‘slowest link’ limitation[1].


Copyright : W.Rebel via Wikimediacommons [https://commons.wikimedia.org/wiki/File:BinaryData50.png]

This approach could dramatically improve the speed and efficiency of simulations conducted across many computers — also called ‘cloud’ simulations.

“The problem of workload imbalance is very common in large-scale simulations, which involve a group of parallel distributed computers or ‘components’ that need to synchronize with each other to ensure that all simulation events are executed in time stamp order,” explains research leader Zengxiang Li, from the A*STAR Institute of High Performance Computing.

Parallel computing simulations involve a large number of events that must occur in order. These events are assigned to multiple parallel computing ‘nodes’ for simultaneous computation. When an event is processed, new events may be generated and inserted into the event processing queue. It is wasteful to let expensive computational resources lie idle waiting for work, so parallel processing schemes often allow each node to process events sequentially without waiting for events from other nodes.

The problem is that if events from one node are late, the other nodes proceeding with their ‘optimistic’ execution of the next event will need to discard their extra work and rollback to where the late node left off. “The entire simulation execution is held back by the slowest components,” says Li, “while faster components risk wasting time and resources on overoptimistic execution and execution rollbacks.”

To improve the efficiency of such simulations, Li and his colleagues developed a resource-conducting scheme called Adaptive Resource Provisioning Mechanism in Virtual Execution Environments, or ArmVee. This scheme sits transparently as middleware in the simulation environment to monitor workloads and task completion speeds on each node in real-time. ArmVee then dynamically reallocates resources, such as memory and processing cycles, to speed up the slowest links.

“We use a self-adaptive auto-regressive-moving-average model — commonly used in control theory — to capture the relationship between simulation performance and resources,” says Li. “This allows ArmVee to predict the dynamically changing simulation workload and to align the execution speeds of simulation components proactively so that each advances in simulation time with comparable speed.”

Importantly, ArmVee can be used transparently in standard simulation architectures without any simulation recoding or interruption. This makes it ready for implementation in standard parallel and distributed simulations.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

Reference

[1] Li, Z., Cai, W., Turner, S. J., Li, X., Duong, T. N. B., Goh, R. S. M. Adaptive resource provisioning mechanism in VEEs for improving performance of HLA-based simulations. ACM Transactions on Modeling and Computer Simulation 26, 1 (2015).


Associated links
Original article from Agency for Science, Technology and Research

A*STAR Research | Research SEA
Further information:
http://www.researchsea.com

More articles from Information Technology:

nachricht Quantum bugs, meet your new swatter
20.08.2018 | Rice University

nachricht Metamolds: Molding a mold
20.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A materials scientist’s dream come true

21.08.2018 | Materials Sciences

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>