Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new method that is 700 times faster than the norm is developed to magnify digital images

24.06.2013
Aránzazu Jurío-Munárriz, a graduate in computer engineering from the NUP/UPNA-Public University of Navarre, has in her PhD thesis presented new methods for improving two of the most widespread means used in digital image processing: magnification and thresholding.
Her algorithm to magnify images stands out not only due to the quality obtained but also due to the time it takes to execute, which is 700 times less than other existing methods that obtain the same quality.

Image processing consists of a set of techniques that are applied to images to solve two problems: to improve the visual quality and to process the information contained in the image so that a computer can understand it on its own.

Nowadays, image thresholding is used to resolve many problems. Some of them include remote sensing where it is necessary to locate specific objects like rivers, forests or crops in aerial images; the analysis of medical tests to locate different structures (organs, tumours, etc.), to measure the volumes of tissue and even to carry out computer-guided surgery; or the recognition of patterns, for example to identify a vehicle registration plate at the entrance to a car park or for personal identification by means of fingerprints.
"Image thresholding separates out each of the objects that comprise the image,” explains Aránzazu Jurío. To do this, each of the pixels is analysed so that all the ones sharing the same features are considered to form part of the same object.”

The thesis entitled “Numerical measures for image processing. Magnification and Thresholding” has produced six papers, which have been published in the most highly rated journals in the field.

Super resolution

The other problem that Aránzazu Jurío has tackled in her thesis is image magnification. It involves increasing the spatial resolution of the image (to obtain a larger image with more pixels that represents the same scene) while preserving the details and sharpness. "Magnification techniques are very useful when we send images from one device to another or when we upload them to the Internet, since in order to make the transmission faster we tend to send a reduced version of the image which, when it arrives at its destination needs to be enlarged to make it available in its original size. Magnification is also used in cases in which the resolution of the image is poor, which may be the case in CCTV surveillance cameras,” she points out.

In the course of her research she has presented two new magnification methods, one for greyscale images and the other for colour images. As she points out, the methods were developed to solve a problem of an infographics company. Starting with a three-dimensional model the company used to generate various images to show to its clients; these images needed to be large so that all the details could be appreciated, but generating them took over 20 hours per image. “The solution we found meant that images could be generated in a smaller size and then enlarged in a very short space of time (less than one hour per image) while maintaining quality. In other words, our algorithm to enlarge images stands out not only due the quality obtained but also due to the time it takes to execute, which is 700 times less than other existing methods that obtain the same quality.”

Fingerprints and the human brain

In her PhD thesis this researcher has also presented two thresholding algorithms. The first is adapted to working with fingerprint images; the second is geared towards brain images obtained by means of MRI scans.

Specifically, the NUP/UPNA's research group she belongs to is collaborating on a project to create an identification centre by means of fingerprints that is capable of handling 40 million prints. “One of the steps in the identification consists of efficiently separating the fingerprint from the image background. In the thesis we proposed a way of measuring the homogeneity of each zone of the image, in other words, to see how similar all the pixels in a region are. On the basis of this measurement we have developed an algorithm that is capable of correctly carrying out the fingerprint thresholding."

The second algorithm has been developed in the framework of a research project in collaboration with doctors at the Complejo Hospitalario de Navarra. The aim is to study the differences in the shapes or volumes of certain areas of the brain in patients who are suffering their first psychotic episodes. The researchers have come up with a method to be able to correctly separate out the area occupied by different brain structures in the image.

Reference

Humberto Bustince; Aranzazu Jurio; Ana Pradera; Radko Mesiar; Gleb Beliakov. Generalization of the weighted voting method using penalty functions constructed via faithful restricted dissimilarity functions. European Journal of Operational Research 225 - 3: 472 - 478. (2013).

Oihane Lakar Iraizoz | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Information Technology:

nachricht Next stop Morocco: EU partners test innovative space robotics technologies in the Sahara desert
09.11.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht A burst of ”synchronous” light
08.11.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>