Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming climate threatens California fruit and nut production

23.07.2009
Winter chill, a vital climatic trigger for many tree crops, is likely to decrease by more than 50 percent during this century as global climate warms, making California no longer suitable for growing many fruit and nut crops, according to a team of researchers from the University of California, Davis, and the University of Washington.

In some parts of California's agriculturally rich Central Valley, winter chill has already declined by nearly 30 percent, the researchers found.

"Depending on the pace of winter chill decline, the consequences for California's fruit and nut industries could be devastating," said Minghua Zhang, a professor of environmental and resource science at UC Davis.

Also collaborating on the study were Eike Luedeling, a postdoctoral fellow in UC Davis' Department of Plant Sciences and UC Davis graduate Evan H. Girvetz, who is now a postdoctoral research associate at the University of Washington, Seattle. Their study will appear July 22 in the online journal PLoS ONE.

The study is the first to map winter chill projections for all of California, which is home to nearly 3 million acres of fruit and nut trees that require chilling. The combined production value of these crops was $7.8 billion in 2007, according to the California Department of Food and Agriculture.

"Our findings suggest that California's fruit and nut industry will need to develop new tree cultivars with reduced chilling requirements and new management strategies for breaking dormancy in years of insufficient winter chill," Luedeling said.

About winter chill

Most fruit and nut trees from nontropical locations avoid cold injury in the winter by losing their leaves in the fall and entering a dormant state that lasts through late fall and winter.

In order to break dormancy and resume growth, the trees must receive a certain amount of winter chill, traditionally expressed as the number of winter chilling hours between 32 and 45 degrees Fahrenheit. Each species or cultivar is assumed to have a specific chilling requirement, which needs to be fulfilled every winter.

Insufficient winter chill plays havoc with flowering time, which is particularly critical for trees such as walnuts and pistachios that depend on male and female flowering occurring at the same time to ensure pollination and a normal yield.

Planning for a warmer future

Fruit and nut growers commonly use established mathematical models to select tree varieties whose winter chill requirements match conditions of their local area. However, those mathematical models were calibrated based on past temperature conditions, and establishing chilling requirements may not remain valid in the future, the researchers say. Growers will need to include likely future changes in winter chill in their management decisions.

"Since orchards often remain in production for decades, it is important that growers now consider whether there will be sufficient winter chill in the future to support the same tree varieties throughout their producing lifetime," Zhang said.

To provide accurate projections of winter chill, the researchers used hourly and daily temperature records from 1950 and 2000, as well as 18 climate scenarios projected for later in the 21st century.

They introduced the concept of "safe winter chill," the amount of chilling that can be safely expected in 90 percent of all years. They calculated the amount of safe winter chill for each scenario and also quantified the change in area of a safe winter chill for certain crop species.

New findings

The researchers found that in all projected scenarios, the winter chill in California declined substantially over time. Their analysis in the Central Valley, where most of the state's fruit and nut production is located, found that between 1950 and 2000, winter chill had already declined by up to 30 percent in some regions.

Using data from climate models developed for the Intergovernmental Panel on Climate Change Fourth Assessment Report (2007), the researchers projected that winter chill will have declined from the 1950 baseline by as much as 60 percent by the middle of this century and by up to 80 percent by the end of the century.

Their findings indicate that by the year 2000, winter chill had already declined to the point that only 4 percent of the Central Valley was still suitable for growing apples, cherries and pears — all of which have high demand for winter chill.

The researchers project that by the end of the 21st century, the Central Valley might no longer be suitable for growing walnuts, pistachios, peaches, apricots, plums and cherries.

"The effects will be felt by growers of many crops, especially those who specialize in producing high-chill species and varieties," Luedeling said. "We expect almost all tree crops to be affected by these changes, with almonds and pomegranates likely to be impacted the least because they have low winter chill requirements."

Developing alternatives

The research team noted that growers may be able change some orchard management practices involving planting density, pruning and irrigation to alleviate the decline in winter chill. Another option would be transitioning to different tree species or varieties that do not demand as much winter chill.

There are also agricultural chemicals that can be used to partially make up for the lack of sufficient chilling in many crops, such as cherries. A better understanding of the physiological and genetic basis of plant dormancy, which is still relatively poorly understood, might point to additional strategies to manage tree dormancy, which will help growers cope with the agro-climatic challenges that lie ahead, the researchers suggested.

Funding for this study was provided by the California Department of Food and Agriculture and The Nature Conservancy.

About UC Davis

For 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has 31,000 students, an annual research budget that exceeds $500 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges — Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science — and advanced degrees from six professional schools — Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.

Media contact(s):

* Minghua Zhang, Land, Air and Water Resources, (530) 752-4953, mhzhang@ucdavis.edu
* Eike Luedeling, Plant Sciences, (530) 574-3794, eluedeling@ucdavis.edu
* Pat Bailey, UC Davis News Service, (530) 752-9843, pjbailey@ucdavis.edu

Patricia Bailey | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Ecology, The Environment and Conservation:

nachricht Plant seeds survive machine washing - Dispersal of invasive plants with clothes
11.09.2018 | Gesellschaft für Ökologie e.V.

nachricht Air pollution leads to cardiovascular diseases
21.08.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Why it doesn’t get dark when you blink

25.09.2018 | Life Sciences

Genome Duplication Drives Evolution of Species

25.09.2018 | Life Sciences

Desert ants have an amazing odor memory

25.09.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>