Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suburban sprawl cancels carbon footprint savings of dense urban cores

07.01.2014
Interactive maps of US metro areas shows striking differences between cities and suburbs

According to a new study by researchers at the University of California, Berkeley, population-dense cities contribute less greenhouse gas emissions per person than other areas of the country, but these cities' extensive suburbs essentially wipe out the climate benefits.


A CoolClimate Map of New York City's carbon footprint by zipcode tabulation area shows a pattern typical of large metropolitan areas: a small footprint in the urban core but a large footprint in surrounding suburbs.

Credit: Daniel Kammen and Christopher Jones, UC Berkeley

Dominated by emissions from cars, trucks and other forms of transportation, suburbs account for about 50 percent of all household emissions – largely carbon dioxide – in United States.

The study, which has been accepted for publication in the journal Environmental Science & Technology (ES&T), uses local census, weather and other data – 37 variables in total – to approximate greenhouse gas emissions resulting from the energy, transportation, food, goods and services consumed by U.S. households, so-called household carbon footprints.

Interactive carbon footprint maps for more than 31,000 U.S. zip codes in all 50 states are available online at http://coolclimate.berkeley.edu/maps.

"The goal of the project is to help cities better understand the primary drivers of household carbon footprints in each location," said Daniel Kammen, Class of 1935 Distinguished Professor of Energy in the Energy and Resources Group and the Goldman School of Public Policy, and director of the Renewable and Appropriate Energy Laboratory. "We hope cities will use this information to begin to create highly tailored, community-scale climate action plans."

A key finding of the UC Berkeley study is that suburbs account for half of all household greenhouse gas emissions, even though they account for less than half the population. The average carbon footprint of households living in the center of large, population-dense urban cities is about 50 percent below average, while households in distant suburbs are up to twice the average: a factor of four difference between lowest and highest locations.

"Metropolitan areas look like carbon footprint hurricanes, with dark green, low-carbon urban cores surrounded by red, high-carbon suburbs," said Christopher Jones, a doctoral student working with Kammen in the Energy and Resources Group. "Unfortunately, while the most populous metropolitan areas tend to have the lowest carbon footprint centers, they also tend to have the most extensive high carbon footprint suburbs."

Taking into account the impact of all urban and suburban residents, large metropolitan areas have a slightly higher average carbon footprint than smaller metro areas.

Developing sustainable cities

"A number of cities nationwide have developed exceptionally interesting and thoughtful sustainability plans, many of them very innovative," Kammen said. "The challenge, however, is to reduce overall emissions. Chris and I wanted to determine analytically and present in a visually striking way the impacts and interactions of our energy, transportation, land use, shopping, and other choices. Cities are not islands: they exist in a complex landscape that we need to understand better both theoretically and empirically."

The UC Berkeley researchers found that the primary drivers of carbon footprints are household income, vehicle ownership and home size, all of which are considerably higher in suburbs. Other important factors include population density, the carbon-intensity of electricity production, energy prices and weather.

"Cities need information on which actions have the highest potential to reduce greenhouse gas emissions in their communities," explained Kammen. "There is no one-size-fits-all solution."

Efforts to increase population density, for example, appear not to be a very effective strategy locally for reducing emissions. A 10-fold increase in population density in central cities yields only a 25% reduction in greenhouse gas emissions.

"That would require a really extraordinary transformation for very little benefit, and high carbon suburbanization would result as a side effect," Jones said.

Increasing population density in suburbs appears to be an even a worse strategy, he said. Surprisingly, population dense suburbs have significantly higher carbon footprints than less dense suburbs.

"Population dense suburbs also tend to create their own suburbs, which is bad news for the climate," explains Jones.

So if building more population-dense cities is not a viable solution for city planners, what is? The project website includes a tool that calculates carbon footprints for essentially every populated U.S. zip code, city, county and U.S. state (31,531 zip codes, 10,093 cities and towns, 3,124 counties, 276 metropolitan regions and 50 states) as well as an interactive online map allowing users to zoom in and out of different locations. Households and cities can calculate their own carbon footprints to see how they compare to their neighbors and create customized climate action plan from over 40 mitigation options.

In some locations, motor vehicles are the largest source of emissions, while in other locations it might be electricity, food, or goods and services. California, for example, has relatively low emissions associated with household electricity, but large emissions from transportation. The opposite is true in parts of the Midwest, where electricity is produced largely from coal.

Tailored emission lowering strategies

The real opportunity, say the authors, is tailoring climate solutions to demographically similar populations within locations.

"Suburbs are excellent candidates for a combination of solar photovoltaic systems, electric vehicles and energy-efficient technologies," said Kammen. "When you package low carbon technologies together you find real financial savings and big social and environmental benefits."

The authors argue that cities need to step out of traditional roles in planning urban infrastructure and learn how to better understand the needs of residents in order to craft policies and programs that enable the adoption of energy and carbon-efficient technologies and practices.

One example of this is the CoolCalifornia Challenge, a statewide carbon footprint reduction competition to name the "Coolest California City." The program, run by Jones and Kammen and sponsored by the California Air Resources Board and Energy Upgrade California, will be accepting applications for new cities in February. Each city creates their own, targeted strategies to reduce barriers and increase motivation to engage residents in climate action.

"People need to act within their own spheres of influence, where they feel they can make the most difference," Jones said. "We hope the information provided in these tools will help individuals, organization and cities understand what makes the most impact locally and to enable more tailored climate strategies.

The research was funded by the National Science Foundation and the California Air Resources Board.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Ecology, The Environment and Conservation:

nachricht Sinking groundwater levels threaten the vitality of riverine ecosystems
04.10.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Protecting our climate, the environment and nature is the focus of a new communications project
04.10.2019 | IDEA TV

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

Bio-circuitry mimics synapses and neurons in a step toward sensory computing

18.10.2019 | Materials Sciences

'Flamenco dancing' molecule could lead to better-protecting sunscreen

18.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>