Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sinking groundwater levels threaten the vitality of riverine ecosystems

04.10.2019

Freiburg hydrologist presents new results showing how sinking groundwater levels threaten the vitality of riverine ecosystems

Groundwater is the world's largest source of freshwater and it is of vital importance for food production. Increasing extraction of groundwater in recent decades has resulted in sinking water tables worldwide.


A study by hydrologist Dr. Inge de Graaf from the Institute of Earth and Environmental Sciences at the University of Freiburg shows that almost 20 percent of the catchments areas where groundwater is pumped suffer from a flow of streams and rivers that is too low to sustain their freshwater ecosystems. This number is expected to increase to 50 percent by 2050.

“The effects can be seen already in the Midwest of the United States and in the Indus Valley project between Afghanistan and Pakistan,” de Graaf explains. The results of her study have been published in the current edition of Nature.

The work, in cooperation with the University of Utrecht, the Water Institute Deltares in the Netherlands, and the University of Victoria in Canada, is the first to simulate groundwater and rivers as interlinked systems on a global level and thus to show the effects of global groundwater extraction.

The researchers used a global hydrological model to calculate the inflow of groundwater to the world’s network of streams and rivers around the world. "If we continue to pump as much groundwater in the coming decades as we have done so far, a critical point will be reached also for regions in southern and central Europe - such as Portugal, Spain and Italy - as well as in North African countries," says de Graaf.

Also at risk are areas where groundwater supplies have remained relatively constant but rivers are no longer able to maintain healthy ecosystems. The researchers estimate that by 2050, between 42 and 79 percent of regions in which groundwater is extracted will have reached their limits. "Climate change may even accelerate this process, as we expect less precipitation, which will further increase the extraction of groundwater and cause dry areas to dry out completely," de Graaf says.

Since the 1960s, rising temperatures have seen the demand for water for humans, animals and plants grow so fast that there has been a rapid increase in the use of groundwater worldwide. De Graaf points out that that more groundwater is often pumped out than rain falls. It is striking how sensitive freshwater ecosystems are to even a relatively small fall in the groundwater level. The study's forecasts run to the year 2100: "The results show that the extent of groundwater extraction often only becomes noticeable decades later.”

Original publication: de Graaf, I.E.M. et al. (2019): Environmental flow limits to global groundwater pumping. In: Nature. DOI: https://doi.org/10.1038/s41586-019-1594-4.

Contact:
Dr. Inge de Graaf
Institute of Earth and Environmental Sciences
University of Freiburg
Phone: 0761 / 203 - 67437
inge.de.graaf@hydrology.uni-freiburg.de

Originalpublikation:

https://www.pr.uni-freiburg.de/pm-en/press-releases-2019/global-danger?set_langu...

Weitere Informationen:

DOI: https://doi.org/10.1038/s41586-019-1594-4.

Nicolas Scherger | idw - Informationsdienst Wissenschaft

More articles from Ecology, The Environment and Conservation:

nachricht Protecting our climate, the environment and nature is the focus of a new communications project
04.10.2019 | IDEA TV

nachricht Preventing Future Forest Diebacks
02.10.2019 | Julius-Maximilians-Universität Würzburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Analysis of Galileo's Jupiter entry probe reveals gaps in heat shield modeling

17.10.2019 | Physics and Astronomy

Creating miracles with polymeric fibers

17.10.2019 | Physics and Astronomy

Synthetic cells make long-distance calls

17.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>