Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Unravels Mystery of Sea Turtles’ ‘Lost Years’

07.03.2014

Jeanette Wyneken, Ph.D., associate professor of biological science at Florida Atlantic University, and Kate Mansfield, Ph.D., a co-investigator at the University of Central Florida, are the first to successfully track neonate sea turtles in the Atlantic Ocean waters during what had previously been called their “lost years.” Findings from the study appear today in the journal Proceeding of the Royal Society B.

The “lost years” refer to the time after turtles hatch and head out to sea until they are seen again upon returning to near-shore waters as large juveniles. The time at sea is often called the “lost years” because not much has been known about where the young turtles go and how they interact with their oceanic environment, until now.


Photo credit: Jim Abernethy

A neonate sea turtle with tracking device attached to its shell makes its way in Atlantic waters.

With small, non-invasive, solar-powered satellite transmitters attached to the turtles’ shells, Wyneken and the team were able to track 17 neonate loggerhead sea turtles for periods ranging from 27 to 220 days and for distances ranging from 124 miles to 2,672 miles.

“Prior to tagging these threatened sea turtles, all we knew about this part of their life’s journey came from one turtle that had been followed for three days,” Wyneken said. “From the time they leave our shores, we don’t hear anything about them until they are found near the Canary Islands. Those waters are a bit like nursery school for them, as they stay for about four to eight years. There’s a whole lot that happens crossing the Atlantic that we knew nothing about.”

Along with Wyneken and Mansfield, Warren P. Porter, Ph.D., from the University of Wisconsin Madison, and Jiangang Luo, from the University of Miami, found that some of their results challenge previously held beliefs.

While the turtles remain in oceanic waters off the Continental Shelf, the study found that little loggerhead turtles sought the surface of the water as predicted. But they do not necessarily remain within the major currents associated with the North Atlantic Subtropical Gyre. It was historically thought that loggerhead turtles hatching from Florida’s east coast complete a long, developmental migration in a large circle around the Atlantic entrained in these currents. But the team’s data suggest that turtles may drop out of these currents into the middle of the Atlantic or the Sargasso Sea.

The team also found that the turtles mostly stayed at the sea surface, where they were exposed to the sun’s energy, and the turtles’ shells registered more heat than anticipated (as recorded by sensors in the satellite tags), leading the team to consider a new hypothesis about why the turtles seek refuge in Sargassum, a type of seaweed found on the surface of the water in the deep ocean. Sargassum is a habitat long associated with young sea turtles.

“We propose that young turtles remain at the sea surface to gain a thermal benefit,” Mansfield said. “This makes sense because the turtles are cold blooded animals. By remaining at the sea surface, and by associating with Sargassum habitat, turtles gain a thermal refuge of sorts that may help enhance growth and feeding rates, among other physiological benefits.”

Wyneken and Mansfield are currently working under grants from NOAA, Florida Sea Turtle License Plate fund, Save Our Seas Foundation, and several individual donors to conduct further work on the sea turtle “lost years.”

“Our satellite tracks help define Atlantic loggerhead nursery grounds and early loggerhead habitat use,” said Wyneken. “This allows us to reexamine the sea turtle ‘lost years’ paradigms.”

For more information, contact Jeanette Wyneken at 561-297-0146 or jwyneken@fau.edu.
-FAU-

About Florida Atlantic University:
Florida Atlantic University, established in 1961, officially opened its doors in 1964 as the fifth public university in Florida. Today, the University, with an annual economic impact of $6.3 billion, serves more than 30,000 undergraduate and graduate students at sites throughout its six-county service region in southeast Florida. FAU’s world-class teaching and research faculty serves students through 10 colleges: the Dorothy F. Schmidt College of Arts and Letters, the College of Business, the College for Design and Social Inquiry, the College of Education, the College of Engineering and Computer Science, the Graduate College, the Harriet L. Wilkes Honors College, the Charles E. Schmidt College of Medicine, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science. FAU is ranked as a High Research Activity institution by the Carnegie Foundation for the Advancement of Teaching. The University is placing special focus on the rapid development of three signature themes – marine and coastal issues, biotechnology and contemporary societal challenges – which provide opportunities for faculty and students to build upon FAU’s existing strengths in research and scholarship. For more information, visit www.fau.edu

Paige Garrido | newswise

Further reports about: Atlantic Sargasso Sea Sargassum Subtropical neonate sea turtle satellite turtles

More articles from Ecology, The Environment and Conservation:

nachricht Clean air for a sustainable future in Manila
22.08.2019 | Leibniz-Institut für Troposphärenforschung e. V.

nachricht A Rescue Plan for the Ocean
16.08.2019 | Institute for Advanced Sustainability Studies e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>