Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Unravels Mystery of Sea Turtles’ ‘Lost Years’

07.03.2014

Jeanette Wyneken, Ph.D., associate professor of biological science at Florida Atlantic University, and Kate Mansfield, Ph.D., a co-investigator at the University of Central Florida, are the first to successfully track neonate sea turtles in the Atlantic Ocean waters during what had previously been called their “lost years.” Findings from the study appear today in the journal Proceeding of the Royal Society B.

The “lost years” refer to the time after turtles hatch and head out to sea until they are seen again upon returning to near-shore waters as large juveniles. The time at sea is often called the “lost years” because not much has been known about where the young turtles go and how they interact with their oceanic environment, until now.


Photo credit: Jim Abernethy

A neonate sea turtle with tracking device attached to its shell makes its way in Atlantic waters.

With small, non-invasive, solar-powered satellite transmitters attached to the turtles’ shells, Wyneken and the team were able to track 17 neonate loggerhead sea turtles for periods ranging from 27 to 220 days and for distances ranging from 124 miles to 2,672 miles.

“Prior to tagging these threatened sea turtles, all we knew about this part of their life’s journey came from one turtle that had been followed for three days,” Wyneken said. “From the time they leave our shores, we don’t hear anything about them until they are found near the Canary Islands. Those waters are a bit like nursery school for them, as they stay for about four to eight years. There’s a whole lot that happens crossing the Atlantic that we knew nothing about.”

Along with Wyneken and Mansfield, Warren P. Porter, Ph.D., from the University of Wisconsin Madison, and Jiangang Luo, from the University of Miami, found that some of their results challenge previously held beliefs.

While the turtles remain in oceanic waters off the Continental Shelf, the study found that little loggerhead turtles sought the surface of the water as predicted. But they do not necessarily remain within the major currents associated with the North Atlantic Subtropical Gyre. It was historically thought that loggerhead turtles hatching from Florida’s east coast complete a long, developmental migration in a large circle around the Atlantic entrained in these currents. But the team’s data suggest that turtles may drop out of these currents into the middle of the Atlantic or the Sargasso Sea.

The team also found that the turtles mostly stayed at the sea surface, where they were exposed to the sun’s energy, and the turtles’ shells registered more heat than anticipated (as recorded by sensors in the satellite tags), leading the team to consider a new hypothesis about why the turtles seek refuge in Sargassum, a type of seaweed found on the surface of the water in the deep ocean. Sargassum is a habitat long associated with young sea turtles.

“We propose that young turtles remain at the sea surface to gain a thermal benefit,” Mansfield said. “This makes sense because the turtles are cold blooded animals. By remaining at the sea surface, and by associating with Sargassum habitat, turtles gain a thermal refuge of sorts that may help enhance growth and feeding rates, among other physiological benefits.”

Wyneken and Mansfield are currently working under grants from NOAA, Florida Sea Turtle License Plate fund, Save Our Seas Foundation, and several individual donors to conduct further work on the sea turtle “lost years.”

“Our satellite tracks help define Atlantic loggerhead nursery grounds and early loggerhead habitat use,” said Wyneken. “This allows us to reexamine the sea turtle ‘lost years’ paradigms.”

For more information, contact Jeanette Wyneken at 561-297-0146 or jwyneken@fau.edu.
-FAU-

About Florida Atlantic University:
Florida Atlantic University, established in 1961, officially opened its doors in 1964 as the fifth public university in Florida. Today, the University, with an annual economic impact of $6.3 billion, serves more than 30,000 undergraduate and graduate students at sites throughout its six-county service region in southeast Florida. FAU’s world-class teaching and research faculty serves students through 10 colleges: the Dorothy F. Schmidt College of Arts and Letters, the College of Business, the College for Design and Social Inquiry, the College of Education, the College of Engineering and Computer Science, the Graduate College, the Harriet L. Wilkes Honors College, the Charles E. Schmidt College of Medicine, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science. FAU is ranked as a High Research Activity institution by the Carnegie Foundation for the Advancement of Teaching. The University is placing special focus on the rapid development of three signature themes – marine and coastal issues, biotechnology and contemporary societal challenges – which provide opportunities for faculty and students to build upon FAU’s existing strengths in research and scholarship. For more information, visit www.fau.edu

Paige Garrido | newswise

Further reports about: Atlantic Sargasso Sea Sargassum Subtropical neonate sea turtle satellite turtles

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>