Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safe water: simpler method for analyzing radium in water samples cuts testing time

30.08.2007
A simpler technique for testing public drinking water samples for the presence of the radioactive element radium can dramatically reduce the amount of time required to conduct the sampling required by federal regulations. The U.S. Environmental Protection Agency (EPA) has approved use of the new testing method.

The technique – developed by Bernd Kahn, director of the Georgia Tech Research Institute’s (GTRI) Environmental Radiation Center (ERC), and GTRI senior research scientist Robert Rosson – became advantageous when the EPA established new radionuclide drinking water standards in 2000.

While radium is found at low concentrations in soil, water, plants and food, the greatest potential for human exposure to radium is through drinking water. Research shows that inhalation, injection, ingestion or body exposure to relatively large amounts of radium can cause cancer and other disorders. Since radium is chemically similar to calcium, it has the potential to cause harm by replacing calcium in bones.

As a result, drinking water systems are now required to sample and report on the amounts of two isotopes, radium-226 and radium-228, that are sometimes found in drinking water supplies.

“The Georgia Department of Natural Resources recognized the applicability and benefits of our method because of the new rules and proposed it to the EPA in 2002,” said Kahn.

The new method developed at GTRI requires only two steps. First, hydrochloric acid and barium chloride are added to a sample of water and heated to boiling. Then concentrated sulfuric acid is added and the radium precipitate is collected, dried and weighed. The samples are then counted with a gamma-ray spectrometry system to determine the content of radium-226 and radium-228.

A gamma-ray spectrometer determines the energy and the count rate of gamma rays emitted by radioactive substances. When these emissions are collected and analyzed, an energy spectrum can be produced. A detailed analysis of this spectrum is used to determine the identity and quantity of radioisotopes present in the source.

“The old method took four hours for each type of radium you needed to test—totaling eight hours for radium-226 and radium-228,” said Rosson. “Our method does the two tests simultaneously and it takes about half an hour of actual technician time.”

Previously approved EPA methods for measuring radium required several isolation and purification steps involving sequential precipitations from large sample volumes and sometimes liquid-liquid extractions. They all ended with a complicated final preparation step before measurement with an alpha scintillation detection system. The scintillation detector detects and counts the flashes of light that are produced when a radioactive substance interacts with a special coating on the inside of the detection container.

The EPA’s December 2007 deadline requiring every water supply be tested for radium-228 and gross alpha radioactivity greatly increased the number of radium-228 measurements required, as well as the likelihood both radium-226 and radium-228 must be measured in the same sample, also increasing the number of measurements required.

If the total radium concentration measured is above five picocuries per liter, then the water supply is out of compliance and radium-226 and radium-228 must be measured quarterly. This may require the water source to be replaced or treated to reduce the radium concentration. If the amount of radioactivity measured is less than five picocuries per liter, samples may be collected at three-, six- or nine-year intervals.

Since the EPA approved this new testing procedure in July 2006, GTRI’s ERC has been able to use the testing method they developed to analyze water samples from Georgia’s Department of Natural Resources.

“We analyze about 1,200 samples per year for them. With 3,000 to 6,000 water supply entry points in Georgia, we’re not done yet,” noted Rosson.

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Ecology, The Environment and Conservation:

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>