Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Norwegian gas measurement technology goes into space

28.08.2007
The Norwegian technology that is to monitor astronauts’ “indoor” climate has gone into space. In the future, similar equipment may help to improve the climate of workplaces on Earth itself.

The “Endeavour” space shuttle was recently launched carrying the apple of the eye of SINTEF scientist Atle Honne; gas measurement equipment and associated software for checking astronauts’ “indoor” climate.

In a few weeks, the 59-year-old SINTEF senior scientist will sit in a control room at NASA in Houston, where he will check that everything is working properly when the equipment is installed in the International Space Station (ISS).

Tests on board the Space Station

ANITA will be tested on board the ISS for ten days. If the instrument passes its exams, the next version could become the space station’s regular air-quality monitoring system.

However, the equipment will not be switched off when the ten-day test phase is over. Since it is already installed, NASA will use it to acquire better air-quality data in the ISS, in the first instance for six months.

“Down-to earth” benefits too

The measurement system, known as ANITA, is the result of a cooperative project between SINTEF and the German company Kayser-Threde GmbH. But although Honne has been project manager on the Norwegian side since day one of the project, he is no “space freak”.

“My involvement, and SINTEF’s, is due to the fact that the measurement technology involved is also highly suitable for use on Earth. It can be used for everything from monitoring industrial processes to checking the indoor climate of submarines and other environments where such checks are important”, says Honne.

All the same, it is a feather in his cap that the system should have become part of the space adventure.

“It is the most demanding market you can image”, says Honne proudly.

Makes countermeasures possible

The idea of ANITA is to prevent astronauts in the Space Station from having to breathe in unpleasant, toxic or carcinogenic gases.

Just as on Earth, gases diffuse out of walls, furnishings and equipment. Others may come from leakages or overheating, while the human body also emits gases. ANITA will enable astronauts to adopt countermeasures in the event of leaks or failures of the air purification system.

The gas monitoring equipment already installed on board the ISS measures only a few gases frequently and rapidly. Others are checked with a reaction time measured in hours, while some can only be measured after air samples have been returned to Earth.

Rapid but sensitive

ANITA is the leading candidate to take over the measurement programme on a permanent basis.

The wholly automatic system is sensitive, recognises and indicates the concentrations of individual gases, works rapidly and can present its results without delay. It “sees” the gases by means of beams of infrared light. Honne has developed the methods that the system uses to interpret its measurement data.

Back on Earth, Honne regards an ideal working day as one during which he has helped to produce results that “improve human health and make a few companies more wealthy, while giving me some interesting work to do”.

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>