Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCD researchers a step closer to finding a new way to reduce greenhouse gas emissions

05.10.2006
Greenhouse gas emissions are widely believed to contribute to climate change and global warming. Under the Kyoto Protocol Ireland agreed to reduce its greenhouse gas emissions to 13% above the 1990 levels by 2008 to 2012.

However, the EPA reported that emissions in 2004 were 23% above the 1990 levels, indicating that Ireland is a long way from meeting the target.

The most important greenhouse gas is carbon dioxide which is released into the atmosphere when fossil fuels are burned to provide power and heat for industries, transportation, homes and businesses. One way to reduce emissions is to capture carbon dioxide from the exhaust streams of industrial processes or cars before it is released into the atmosphere.

A new technology is being developed by Centre for Synthesis and Chemical Biology (CSCB) researchers, Professor Don MacElroy and Dr Damian Mooney from the UCD School of Chemical and Bioprocess Engineering and Dr Matthias Tacke and his research group from the UCD School of Chemistry and Chemical Biology, which aims to capture carbon dioxide from exhaust streams. This inorganic membrane technology must be capable of separating and capturing carbon dioxide after combustion.

"To date no membranes have been developed to separate carbon dioxide at temperatures of greater than 400°C from combustion or other high temperature process gases," explains Professor MacElroy. "Our preliminary results show that ultra-thin nanoporous membranes can separate carbon dioxide from nitrogen at 600°C."

It is essential to separate carbon dioxide from other gases to facilitate economic storage after capture.

"The separation technique works on the basis of molecular size. The difficulty with separating carbon dioxide from nitrogen lies in the dimensions of the atoms within the molecules," says Professor MacElroy. "There is about 10% difference in size between them so it was a challenge for us to develop a membrane that is selective for carbon dioxide over nitrogen."

Research work carried out by Dr Laurence Cuffe as part of his postdoctoral programme involved developing a composite membrane on Vycor glass. The pore size of Vycor glass is too large so it must be chemically modified by coating it with an inorganic nanomembrane.

"The modification to the surface of the Vycor results in the formation of nanoporous plugs which are permeable to carbon dioxide but form a barrier to nitrogen," continues Professor MacElroy.

The preliminary results showed that these membranes exhibit selectivities for carbon dioxide over nitrogen of more than 36:1 in one case and 75:1 in another case at a working temperature of 600°C. Professor MacElroy explained that the group is now looking at other processes of modifying the glass which are more versatile.

After carbon dioxide is captured, it must then be stored long term or recycled. Oceans and forests act as natural carbon dioxide reservoirs but underground caverns, old gas wells and saline aquifers are also used. Statoil, for example, has undertaken a commercial project of capturing carbon dioxide from the Sleipner gas field in the Norwegian North Sea and storing it 1000 meters under the sea bed in a saline aquifer.

Professor MacElroy concludes that "Carbon dioxide could be recycled by returning it to an artificial carbon cycle. It is a valuable commodity and under appropriate processing conditions there is the possibility of converting it into low molecular weight chemical commodities or recycling it into methanol. Recycling captured carbon dioxide could well be part of the quest for renewable energy sources."

The CSCB is a collaboration in the chemical sciences between University College Dublin (UCD), Trinity College Dublin (TCD) and the Royal College of Surgeons of Ireland (RCSI). The centre was established in Dublin in December 2001 after being awarded €26 million by the Irish Government's Higher Education Authority Programme for Research in Third Level Institutions (PRTLI).

Orla Donoghue | alfa
Further information:
http://www.ucd.ie/cscb/

More articles from Ecology, The Environment and Conservation:

nachricht New mathematical model can help save endangered species
14.01.2019 | University of Southern Denmark

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Mechanical engineers develop process to 3D print piezoelectric materials

22.01.2019 | Materials Sciences

Energizing the immune system to eat cancer

22.01.2019 | Health and Medicine

Early Prediction of Alzheimer’s Progression in Blood

22.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>