Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unicellular organisms contribute more nitrogen to ocean that reported earlier

26.08.2004


In this map of the Pacific Ocean, the deep blue areas are the nutrient-poor and thus low-fertility, central gyres of the major ocean basins. Fewer phytoplankton grow here. The lighter blue areas represent more productive regions with higher rates of nutrient input and consequently higher phytoplankton biomass. The continental shelves and upwelling regions (e.g., along the equator) tend to have higher biomass because of nutrient input. Map Courtesy of the National Oceanic and Atmospheric Administration


Large, nutrient-poor expanses of the open ocean are getting a substantial nitrogen influx from an abundant group of unicellular organisms that "fix," or chemically alter, nitrogen into a form usable for biological productivity.

First identified about five years ago, these organisms – about 7 microns in diameter – are fixing nitrogen at rates up to three times higher than previously reported for the Pacific Ocean, according to research published in the Aug. 26, 2004 edition of the journal Nature. On a transect from Oahu, Hawaii, to San Diego, Calif., researchers measured some of the highest rates in this study: Seven milligrams of nitrogen – an essential nutrient for the growth of many organisms – were being injected into the phytoplankton and other organic materials in every square meter of the ocean surface.

"To our surprise, these unicellular nitrogen-fixers are broadly distributed spatially and vertically distributed at least down to 100 meters, and they’re fixing nitrogen at quite high rates," said lead author Joe Montoya, an associate professor of biology at the Georgia Institute of Technology. "The rates we measured imply a total input of nitrogen that exceeds the rate of nitrogen fixation measured for the cyanobacteria Trichodesmium (traditionally believed to be the dominant marine nitrogen-fixer) in the Pacific Ocean. These unicells are the largest single source of nitrogen entering the water in broad areas of the ocean."



This level of nitrogen fixation in the Pacific Ocean alone accounts for about 10 percent of the total global oceanic new production of biomass, according to the researchers’ preliminary calculations published in the Nature paper. "This is globally important because new production in the ocean is one of the key forces that drives the uptake of carbon dioxide from the atmosphere into the ocean," Montoya explained. "This represents a route for trapping and sequestering carbon dioxide and keeping it out of atmospheric circulation for some time."

Carbon dioxide is one of the naturally occurring gases that traps energy from the sun and helps maintain hospitable temperatures on Earth, creating the "greenhouse effect." But studies indicate that greenhouse gases that form from vehicle and industrial emissions are enhancing the greenhouse effect and contributing to global climate warming.

The nitrogen-fixation rates reported in Montoya’s study are conservative figures, according to the paper. First, any errors in the researchers’ experiment will tend to produce underestimates of the true rate, Montoya said. Second, they interpreted the data based on the assumption that unicells are only fixing nitrogen for 12 hours a day – a common pattern for other nitrogen-fixing organisms. But some of their data indicate that unicells may actually fix nitrogen around the clock.

"These measurements have important geochemical implications, so at this early stage, I would rather undersell than oversell the numbers," Montoya added. "…. We may be underestimating the true rate of nitrogen fixation by a factor of two."

With funding from the National Science Foundation (NSF), Montoya first began this research five years ago with colleague Jonathan Zehr, a professor of molecular biology at the University of California at Santa Cruz, and one of the authors on this Nature paper. The other authors are Georgia Tech graduate student Carolyn Holl, University of Hawaii graduate student Andrew Hansen, University of Texas at Austin Associate Professor of Marine Science Tracy Villareal and University of Southern California Professor of Marine Science Douglas Capone.

The research team’s findings – resulting from several month-long research cruises -- have prompted a follow-up study recently funded by NSF. The scientists will continue to survey the Pacific Ocean, as well as the North Atlantic and the South Pacific oceans in two more research cruises in 2006 and 2007. In addition to collecting more detailed nitrogen-fixation rate measurements, the researchers will conduct manipulation experiments to determine if phosphorus, iron or some other environmental factor is playing a role in determining the abundance, distribution and activity of these unicells, Montoya explained.

In the South Pacific, Montoya expects to find high rates of nitrogen fixation by unicells, he said. Their measurements already taken in the marginal waters of the South Pacific – off the coast of northern Australia – yielded the highest recorded rates of nitrogen fixation by unicells to date.

There are still numerous regions of nutrient-poor oceans – typically off the continental shelves from the equator north and south to about 40 degrees latitude – about which little or nothing is known in regard to unicellular nitrogen-fixing organisms, Montoya noted. "We are still at a very early stage in understanding ocean science and how things work in these enormous pieces of the ocean," he added.

But the researchers anticipate finding that unicells have an even greater impact than they have already discovered. "We haven’t even done the measurements yet for the Atlantic and South Pacific oceans, so in aggregate, unicells might account for an even more substantial fraction of the global new production," Montoya said.

Overall, this research effort is increasing scientists’ understanding of the fertility of the ocean. "This group of tiny, photosynthetic organisms, whose contribution to the fertility of the ocean is significant, appears to play a critical role in driving the movement of elements through the ocean both in the upper layer of the water and from the atmosphere into the ocean," Montoya added.

Jane Sanders | EurekAlert!
Further information:
http://www.edi.gatech.edu

More articles from Ecology, The Environment and Conservation:

nachricht Plant seeds survive machine washing - Dispersal of invasive plants with clothes
11.09.2018 | Gesellschaft für Ökologie e.V.

nachricht Air pollution leads to cardiovascular diseases
21.08.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>