Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combining global environmental changes yields surprising ecosystem response

06.12.2002


Scientists have discovered that elevated atmospheric CO2 (carbon dioxide) can suppress plant growth when increases of this important greenhouse gas are combined with a broad suite of already-occurring environmental changes. According to Christopher Field, project leader and director of the new Department of Global Ecology of the Carnegie Institution of Washington, "We are now getting a much richer picture of ecosystem responses to global environmental changes, and the traditional view that elevated CO2 always stimulates plant growth simply isn’t correct." The research is published in the December 6, 2002, issue of Science.

Many past studies of global-change impacts on plants and ecosystems have focused on responses to increases in atmospheric CO2. But realistically, global changes are much more than just elevated CO2. They include global warming, altered rainfall, and increases in biologically available nitrogen compounds produced during fossil-fuel combustion. These other global changes can have major impacts on plants and ecosystems. A new study by scientists at the Carnegie Institution of Washington, the Nature Conservancy, and Stanford University shows, for the first time, how these other global changes alter the response of a natural ecosystem to increased atmospheric CO2. According to lead author Rebecca Shaw, "In the third year of the experiment, plant growth increased in the plots treated with CO2 alone, as in many other experiments. It also increased in plots exposed to the other global changes--warming, increased precipitation, and fertilizing with nitrogen --alone or in combination. But, when we added carbon dioxide, the effect of the other treatments was suppressed. The elevated CO2 in this situation pushed the response back toward the initial conditions."

Over the last hundred years, the concentration of CO2 in the atmosphere has increased by more than 30%. The planet has warmed by about 1 ºF. Rainfall has increased in some regions and decreased in others. And human actions have more than doubled inputs of biologically available nitrogen. Elevated atmospheric CO2 increases plant growth in many experiments, but most past experiments studied impacts of CO2 alone or in combination with one other factor. The results of the Carnegie-led experiment reveal new dimensions of ecosystem responses to global change. In the California grassland studied by this team, elevated CO2 suppresses plant growth in many treatments, especially treatments where growth at normal CO2 is fastest. Field noted, "When we look at impacts of realistic global changes on whole ecosystems, we see a broad range of responses. We do not yet know whether responses will be similar in other ecosystems, but our wide range of treatments helps open the door to understanding global-change impacts on ecosystems not yet studied."



This research was conducted over a three-year period at Stanford University’s Jasper Ridge Biological Preserve. The small stature and short life span of the plants in this California grassland ecosystem make it a model system --one that is relatively simple to study, but with results that can be used to help interpret global-change responses of all the world’s land ecosystems.

Carnegie’s new Department of Global Ecology --launched July 1, 2002, on the campus of Stanford University -- grew from a century of ecological research at Carnegie’s Department of Plant Biology, also at Stanford. Using the latest technology--from satellite imagery to the tools of molecular biology--Carnegie scientists have been analyzing the complicated interactions of Earth’s land, atmosphere, and oceans. Building from biological details at the level of biochemistry and physiology, they link data and concepts from the microscopic to the global scales. The interdisciplinary Carnegie team views the planet through a biological lens to probe the function, assess the fragility, and explore the integration of the world’s ecosystems. They tackle issues such as the global carbon cycle, the role of land and oceanic ecosystems in regulating climate, the interaction of biological diversity with ecosystem function, and much more. According to Field, "We know too much about the influence of mechanisms that span biology, geology, and atmospheric sciences to stick with traditional disciplinary approaches for global studies. We need to establish a new, interdisciplinary scientific field--global ecology."


The Carnegie Institution of Washington (http://www.CarnegieInstitution.org) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments in the U.S.: Embryology, Geophysical Laboratory, Terrestrial Magnetism, The Observatories, Plant Biology, and Global Ecology.

Rebecca Shaw | EurekAlert!
Further information:
http://www.ciw.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>