Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combining global environmental changes yields surprising ecosystem response

06.12.2002


Scientists have discovered that elevated atmospheric CO2 (carbon dioxide) can suppress plant growth when increases of this important greenhouse gas are combined with a broad suite of already-occurring environmental changes. According to Christopher Field, project leader and director of the new Department of Global Ecology of the Carnegie Institution of Washington, "We are now getting a much richer picture of ecosystem responses to global environmental changes, and the traditional view that elevated CO2 always stimulates plant growth simply isn’t correct." The research is published in the December 6, 2002, issue of Science.

Many past studies of global-change impacts on plants and ecosystems have focused on responses to increases in atmospheric CO2. But realistically, global changes are much more than just elevated CO2. They include global warming, altered rainfall, and increases in biologically available nitrogen compounds produced during fossil-fuel combustion. These other global changes can have major impacts on plants and ecosystems. A new study by scientists at the Carnegie Institution of Washington, the Nature Conservancy, and Stanford University shows, for the first time, how these other global changes alter the response of a natural ecosystem to increased atmospheric CO2. According to lead author Rebecca Shaw, "In the third year of the experiment, plant growth increased in the plots treated with CO2 alone, as in many other experiments. It also increased in plots exposed to the other global changes--warming, increased precipitation, and fertilizing with nitrogen --alone or in combination. But, when we added carbon dioxide, the effect of the other treatments was suppressed. The elevated CO2 in this situation pushed the response back toward the initial conditions."

Over the last hundred years, the concentration of CO2 in the atmosphere has increased by more than 30%. The planet has warmed by about 1 ºF. Rainfall has increased in some regions and decreased in others. And human actions have more than doubled inputs of biologically available nitrogen. Elevated atmospheric CO2 increases plant growth in many experiments, but most past experiments studied impacts of CO2 alone or in combination with one other factor. The results of the Carnegie-led experiment reveal new dimensions of ecosystem responses to global change. In the California grassland studied by this team, elevated CO2 suppresses plant growth in many treatments, especially treatments where growth at normal CO2 is fastest. Field noted, "When we look at impacts of realistic global changes on whole ecosystems, we see a broad range of responses. We do not yet know whether responses will be similar in other ecosystems, but our wide range of treatments helps open the door to understanding global-change impacts on ecosystems not yet studied."



This research was conducted over a three-year period at Stanford University’s Jasper Ridge Biological Preserve. The small stature and short life span of the plants in this California grassland ecosystem make it a model system --one that is relatively simple to study, but with results that can be used to help interpret global-change responses of all the world’s land ecosystems.

Carnegie’s new Department of Global Ecology --launched July 1, 2002, on the campus of Stanford University -- grew from a century of ecological research at Carnegie’s Department of Plant Biology, also at Stanford. Using the latest technology--from satellite imagery to the tools of molecular biology--Carnegie scientists have been analyzing the complicated interactions of Earth’s land, atmosphere, and oceans. Building from biological details at the level of biochemistry and physiology, they link data and concepts from the microscopic to the global scales. The interdisciplinary Carnegie team views the planet through a biological lens to probe the function, assess the fragility, and explore the integration of the world’s ecosystems. They tackle issues such as the global carbon cycle, the role of land and oceanic ecosystems in regulating climate, the interaction of biological diversity with ecosystem function, and much more. According to Field, "We know too much about the influence of mechanisms that span biology, geology, and atmospheric sciences to stick with traditional disciplinary approaches for global studies. We need to establish a new, interdisciplinary scientific field--global ecology."


The Carnegie Institution of Washington (http://www.CarnegieInstitution.org) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments in the U.S.: Embryology, Geophysical Laboratory, Terrestrial Magnetism, The Observatories, Plant Biology, and Global Ecology.

Rebecca Shaw | EurekAlert!
Further information:
http://www.ciw.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Emissions from road construction could be halved using today’s technology
18.05.2020 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht When every particle counts: IOW develops comprehensive guidelines for microplastic extraction from environmental samples
11.05.2020 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Researchers at Mainz University develop a sustainable method for extracting vanillin from wood processing waste

04.06.2020 | Life Sciences

A storage battery for the entire world

04.06.2020 | Power and Electrical Engineering

A remote control for neurons

04.06.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>