Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Industrial fishing threatens sharks, dolphins, billfish

05.08.2002


Industrial fishing poses the biggest threat to life and fin for sharks, dolphins and billfish that inhabit the tropical and northern Pacific Ocean, says a new study forecasting the effects of commercial fishing on ocean ecosystems.



Though not targeted by the fishing industry, some ocean species often get caught unintentionally in nets or lines used to catch tuna and other commercially valuable fish, says a study presented to scientists today, Aug. 5, at the annual meeting of the Ecological Society of America.

A University of Wisconsin-Madison group’s study points to the potential increased risks for the large, slow-growing, slow-to-reproduce animals at the top of food chain.


"It’s the sharks, dolphins and billfishes that are hurt the most," says Jefferson Hinke, a University of Wisconsin-Madison graduate student and study group member.

Now, populations of most target species are stable and viable, thanks in part to restrictions on undiscriminating fishing practices such as drift nets and fish aggregation devices. However, any substantial increase in industrial fishing could play havoc with both target and non-target animal populations, Hinke says.

"In these systems, environmental variability tends to have little effect at the top of the food web," he says. "What’s really important is the fishing."

Hinke, working under the auspices of the National Center for Ecological Analysis and Synthesis in Santa Barbara, Calif., is part of a group that is developing computer models able to accurately forecast the effects of fishing on major ocean ecosystems. The hope, he says, is to provide fishery managers with a set of tools that can be used to predict change in economically important but ecologically sensitive systems.

The models Hinke and his colleagues are working to develop can help reveal "what happens when you fish off the top of the food chain," says James Kitchell, a UW-Madison professor of zoology. "You fish in different ways, you have different effects."

In the Pacific, tuna populations - the intended and preferred catch of commercial fishing outfits from Japan, the U.S. Mexico and other Pacific nations - are in generally good shape, Hinke notes. Because these fish tend to mature and reproduce at much earlier ages than the non-target species like sharks and dolphins, their populations are able to withstand relatively heavy fishing pressure. However, increased fishing pressure would very likely cause strong declines, especially for the already very heavily fished yellowfin tuna stocks.

Other animals at that top of the ocean ecosystem heap are a different story. "Yellowfin tuna have a life span of only five years," Hinke says. "They have really fast growth rates and they can begin to reproduce early in life. A shark, on the other hand, can live 20 or 30 years and may not reproduce until it reaches 10 years of age. Sharks also produce relatively few offspring as opposed to a tuna which will spawn sometimes every day for a year and produce millions and millions of eggs."

The models being developed by Hinke and his colleagues at the National Center for Ecological Analysis and Synthesis also are meant to forecast how fish populations of all kinds will respond to different fishing scenarios. Ratcheting up fishing pressure, according to model simulations, may cause as much as a 20-50 percent decline in populations of dolphins, sharks and billfishes like marlin, sailfish and swordfish.

"The models are part of the toolbox for managers, and they have proven to be effective," Hinke says. "We can model at a level now that permits us to tell how some of these animals might respond to different levels of pressure."

Co-authors of the paper delivered by Hinke include Kitchell, who directs the UW-Madison Center for Limnology, Isaac Kaplan of the UW-Madison Center for Limnology, and George Watters, a scientist at the Pacific Fisheries Environmental Lab in Pacific Grove, Calif. Robert Olson, also a co-author, is a scientist at the Inter-American Tropical Tuna Commission in La Jolla, Calif.

CONTACT:
James Kitchell, (608) 262- 3014, kitchell@mhub.limnology.wisc.edu
Terry Devitt (608) 262-8282, trdevitt@facstaff.wisc.edu


Jefferson Hinke | EureAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Emissions from road construction could be halved using today’s technology
18.05.2020 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht When every particle counts: IOW develops comprehensive guidelines for microplastic extraction from environmental samples
11.05.2020 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>