For Clean Water

One of the most pressing needs of our time is safe, sustainable access to fresh water. The dominant technology for desalination of water is membrane-based desalination, an energy-efficient, environmentally friendly process.

Scientists have now developed a new membrane material that, unlike current polyamide membranes, tolerates chlorinated water. A team headed by Ho Bum Park (University of Ulsan, South Korea), Benny D. Freeman (University of Texas at Austin, USA), and James E. McGrath (Virginia Polytechnic Institute, Blacksburg, USA) reported in the journal Angewandte Chemie on a membrane that is made of sulfonated copolymers.

Chlorine is the most commonly used biocide in water treatment because it is both inexpensive and very effective in small amounts. The disinfection of water headed into membrane-based desalination facilities is crucial to hinder the growth of biofilms, which reduce efficiency. Polyamide membranes do not tolerate chlorine. This means that the water must first be treated with chlorine, and then the chlorine must be removed before the water comes into contact with the membrane. Before being fed into the supply network, the water must be chlorinated again. This is a complex, costly procedure.

Membranes made of polysulfone, a sulfur-containing engineering thermoplastic, are being considered as an alternative. They are highly tolerant to chlorine. However, polysufones are hydrophobic and do not allow enough water to pass through them. By attaching additional charged sulfonic acid groups, the researchers hoped to make the polymer more water friendly without affecting its other valuable properties.

Whereas previous efforts focused on modification of the polysulfone after polymerization, the team now took a different route: the simultaneous polymerization of disulfonated monomers (a building block containing two hydrophilic sulfonic acid groups) and another type of monomer led to the formation of a copolymer. Undesired side-reactions, cross-linking or breaks in the polymer chains do not occur by this method. Most importantly, it is possible to precisely control how many water-friendly, charged sulfonic acid groups are in the polymer chain. This allows the targeted generation of chlorine-resistant membranes whose permeability for water and salts can be tailored to specific applications (e.g., nanofiltration, reverse osmosis).

Media Contact

Benny D. Freeman Angewandte Chemie International

More Information:

http://www.engr.utexas.edu/

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors