Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ecological Globalization: Scientists Examine Ecosystem Connectivity Using Long-term Studies

03.06.2008
Ecosystems are constantly exchanging materials through the movement of air in the atmosphere, the flow of water in rivers and the migration of animals across the landscape.

People, however, have also established themselves as another major driver of connectivity among ecosystems. In the June 2008 Special Issue of Frontiers in Ecology and the Environment, titled “Continental-scale ecology in an increasingly connected world,” ecologists discuss how human influences interact with natural processes to influence connectivity at the continental scale.

The authors conclude that networks of large-scale experiments are needed to predict long-term ecological change.

“We know that the world has always been connected via a common atmosphere and the movement of water,” says Debra Peters, an author in the issue and a scientist with the United States Department of Agriculture’s Agricultural Research Service (USDA-ARS). “The world is also becoming highly interconnected through the movement of people and the transport of goods locally to globally. Among ecologists, there is an increasing realization that these connections can have profound influences on the long-term dynamics of ecological systems.”

The transport of many types of materials, including gases, minerals and even organisms, can affect natural systems. This movement results in “greenlash,” which occurs when environmental changes localized to a small geographic area have far-reaching effects in other areas. For example, a drought in the 1930’s caused small-scale farmers to abandon their farms across the U.S. Midwest. The absence of crops intensified local soil erosion, leading to powerful dust storms. Large amounts of wind-swept dust traveled across the continent, causing the infamous Dust Bowl and affecting air quality, public health and patterns of human settlement throughout the country.

Because of increasing globalization, people often inadvertently introduce non-native plants, animals and diseases into new locations. Invasive species and pathogens, such as fire ants from South America and the SARS virus from China, can create large, expensive problems: the U.S. currently spends over $120 billion per year on measures to prevent and eradicate invasive species. Understanding ecosystem connectivity across a range of scales – from local to regional to continental – will help scientists predict where invasive species are likely to go next.

The authors agree that field ecology studies should focus on long-term sampling networks that encompass a range of geographical scales. Integrating data from existing and developing networks, such as the National Science Foundation’s Long Term Ecological Research network (LTER) and NSF’s National Ecological Observatory Network (NEON), will lead to a level of power for ecological comparison unparalleled by any one experiment.

“To draw conclusions about the consequences of increasing connectivity, we need to provide information about processes that span a vast scale of space and time,” says David Schimel, an author in the issue and the chief executive officer of the NEON project. “Our observations will characterize ecological processes from the genomic to the continental and document changes from seconds to decades.”

Additionally, the authors suggest that long-term studies should include data from social and behavioral science to allow incorporation of human movement patterns into their scientific models. Ecologists hope that understanding the patterns of connectivity within and among ecosystems will lead to more accurate predictions of future ecological change.

To learn more about ecological connectivity, look for a podcast interview with Debra Peters on the Ecological Society of America’s web site at http://www.esa.org/podcast on June 2.

The Special Issue of Frontiers was supported by funding from the National Science Foundation, USDA-ARS, and the Consortium for Regional Ecological Observatories. The issue is free and will be available to the public June 1 at http://www.frontiersinecology.org/.

The Ecological Society of America is the world’s largest professional organization of ecologists, representing 10,000 scientists in the United States and around the globe. Since its founding in 1915, ESA has promoted the responsible application of ecological principles to the solution of environmental problems through ESA reports, journals, research, and expert testimony to Congress. ESA publishes four journals and convenes an annual scientific conference. Visit the ESA website at http://www.esa.org.

Christine Buckley | newswise
Further information:
http://www.frontiersinecology.org/
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht Loss of habitat causes double damage to species richness
02.04.2019 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Deep decarbonization of industry is possible with innovations
25.03.2019 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unprecedented insight into two-dimensional magnets using diamond quantum sensors

For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. They used diamond quantum sensors to determine the strength of the magnetization of individual atomic layers of the material chromium triiodide. In addition, they found a long-sought explanation for the unusual magnetic properties of the material. The journal Science has published the findings.

The use of atomically thin, two-dimensional van der Waals materials promises innovations in numerous fields in science and technology. Scientists around the...

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...
All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Hopkins researchers ID neurotransmitter that helps cancers progress

26.04.2019 | Life Sciences

Unprecedented insight into two-dimensional magnets using diamond quantum sensors

26.04.2019 | Physics and Astronomy

Liquid crystals in nanopores produce a surprisingly large negative pressure

26.04.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>