Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reforestation using exotic plants can disturb the fertility of tropical soils

30.05.2008
In many regions of the world, the impact of human activity on the environment intensified considerably over the past century.

The high world population growth rate and the expansion of areas given over to crop production associated with climatic changes (longer periods of drought, irregular rainfall patterns) induced by global warming, have contributed to the acceleration of desertification.

According to World Soil Information (ISRIC) rate, in the space of 50 years, 12.8 million km2 of soils have thus experienced diminished fertility. With the aim of limiting such land impoverishment, which is hitting the intertropical and mediterranean zones particularly harshly, a range of reforestation programmes using rapid-growing forest species (such as eucalyptus, exotic pine or Australian acacias) was undertaken from the mid 1970s. Establishment of bacterial and mycorrhizal symbioses provides these trees with the adaptation ability necessary for growth on virtually barren, mineral-deficient soil.

Although no proof is needed as to their effectiveness for producing plant biomass in harsh environmental conditions and their utility as windbreaks to control erosion, there is little information on their potential impact on the genetic and functional biodiversity of the soil microorganisms. A research programme run since 2005 in Senegal and Burkina Faso by an IRD team and its partners1 yielded clues for understanding the influence of exotic plants on the structure and biodiversity of these communities of fungi and bacteria. In Burkina Faso, controlled experiments showed that the development of E. camaldulensis, the eucalyptus species most often planted in the world, outside its area of origin, significantly reduced the diversity of the mycorrhizal fungi communities essential for the healthy functioning of the ecosystem. This negative effect was also found in the soil of a Senegalese plantation of Acacia holosericea where, scarcely a few months after its introduction, the soil’s microbial characteristics had completely changed.

This quick-growing species had effectively selected certain species of mycorrhizal fungi and bacteria of the genus Rhizobium, ending in a reduction in the species diversity of these symbiotic communities. The soil sampled from areas surrounding the A. holosericea plantation had a balanced distribution of mycorrhizal fungi species, whereas the breakdown of the fungal spore content in soil from the plantation showed a predominance of one species and therefore a strong imbalance in the composition of the mycorrhizal fungi community. In the knowledge that a plant ecosystem’s productivity is closely dependent on a soil’s mycorrhizal diversity, there is a risk that the Australian acacia might create a new ecosystem whose physical, chemical and biological characteristics will not necessarily be favourable to a recolonization of the habitat by native species. The research also demonstrated that the environments generated by this species were less resistant to water and heat stress. In a context of global climate change, such habitats could therefore experience a drastic fall in their microbial activity and thus lose their ability to be the basis of proper development of the plant cover.

The conclusions of the study conducted in Senegal in a precisely defined environment cannot, however, be generalized to tropical soils as a whole. Indeed, investigations on another A. holosericea plantation, in Burkina Faso, yielded the observation of an increase in microbial functional diversity. The contradictions between these sets of results should prompt the organizations involved in natural resources management to plan for possible introductions of exotic species case by case, taking account not only of potential impacts of the plant species under consideration for introduction, but also of the nature of the soils they are to colonize. For although this practice can yield highly satisfactory results, such as increases in the species richness of severely degraded environments, such as old mining areas, it can also upset for a long time the organization of the microbial communities which guarantee the fertility of a soil.

Grégory Fléchet – DIC

1. This research work was conducted with the support of scientists from the Département de biologie végétale of the Cheikh Anta Diop University of Dakar (Senegal) and from the Laboratoire Sol-Plante-Eau of the Institut de l'Environnement et des Recherches Agricoles (Inera) of Ouagadougou (Burkina Faso)

Grégory Fléchet | alfa
Further information:
http://www.ird.fr/us/actualites/fiches/2008/fas296.pf

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>