Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Despite hopeful report that fungi help trees weather acid rain, not all species are protected, Cornell forest ecologist warns

19.06.2002


A discovery reported in the latest edition of the journal Nature (June 13, 2002) -- that fungi on the roots of some trees in the Northeastern United States help supply much-needed calcium in forest soils battered by acid rain -- would seem to ease worries about the worrisome form of pollution.



But don’t stop worrying just yet, warns Timothy J. Fahey, the Liberty Hyde Bailey Professor of Natural Resources at Cornell University and a co-author of the report, "Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems."

"Not all tree species are fortunate enough to be associated with the types of root fungi that supply calcium," he says, pointing to sugar maples, which in some areas have suffered serious declines in recent years.


"And although our findings suggest that trees with the right fungal associations may be able to short-circuit the loss of calcium in the soil, that may not get them around other problems with acidification of soil," he adds. For example, when soil pH is lowered (and acidity rises) more naturally occurring aluminum is available to hinder plant growth. Fahey is co-principal investigator in the soil study sponsored by the National Science Foundation (NSF) at New Hampshire’s Hubbard Brook Experimental Forest.

Also contributing to the Nature report were researchers at the University of Michigan, Syracuse University, the Yale School of Forestry and Environmental Studies, the U.S. Department of Agriculture’s Forest Service and the Institute of Ecosystem System Studies in Millbrook, N.Y.

Although forest scientists have known for more than three decades that acid rain causes the essential plant nutrient calcium to leach from forest soils, the role of the "short-circuiting" fungus was not suspected until about three years ago. That’s when electron-microscopy examination of sand revealed tiny tunnels burrowed through the grains; the mini-miners turned out to be ectomycorrhizal fungi that can penetrate micropores in silicates and take up phosphorus, as well as calcium. Living in symbiotic relationships on some tree roots -- where fungi obtain sugar needed for life processes -- the ectomycorrhizal fungi deliver calcium and phosphorus directly to the trees before the nutrients are lost to acidic soils.

The NSF-sponsored study at Hubbard Brook is testing the long-term result of adding calcium to forested ecosystems to return acid-base ratios to levels that probably existed a century ago, before industrial pollution began to change the chemical landscape of the northeastern United States. The Hubbard Brook researchers were using stable isotope tracing to learn the sources of calcium in plant matter. They found that a significant proportion of calcium in some tree species (particularly conifers, beech and birches) growing in calcium-poor, acidic soil was coming from apatite, a soil mineral mined by fungi on tree roots.

Apatite, pronounced like "appetite," is a calcium phosphate mineral. The trees also were getting some calcium from the better-understood "soil exchange complex," in which calcium is replenished by mineral weathering and atmospheric deposition before being absorbed by roots. But without the beneficial "weathering" of apatite by the ectomycorrhizal root fungi, some trees in acid rain-drenched soils probably would not be getting enough calcium, the researchers reasoned.

Benefits of the fungal association are most pronounced in tree species that can sustain the right kind of mycorrhizae on their roots -- spruce, fir and most other coniferous varieties, as well as certain hardwoods, such as oaks. And a lesser benefit might accrue to trees species with the "wrong" type of root fungi -- including ash, basswood and maples -- if they are growing nearby in mixed-species forests, simply because they are close enough to share calcium mined by other trees’ mycorrhizae, Cornell’s Fahey says.

"But trees trying to grow in the center of a single-species stand, like a sugarbush, could be in trouble," Fahey says, noting that the sugar maple decline in the Northeast has been linked with calcium and magnesium depletion in soils..

And he hopes that anyone who downplays the effects of pollution will not take comfort in the knowledge that obscure fungi are mopping up after acid rain. "There are still numerous deleterious effects of acid rain," Fahey says, "that have nothing to do with mycorrhizae."

Roger Segelken | EurekAlert!
Further information:
http://www.hbrook.sr.unh.edu/hbfound/hbfound.htm

More articles from Ecology, The Environment and Conservation:

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>