Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small bacteria – big money

29.01.2008
Bacteria in oil reservoirs produce give more oil.

They are tiny, and they eat oil. Still, they are the ones that can help us obtain more underwater black gold. Oil-eating bacteria will be used to detect oil that cannot be recovered by other methods and make the route out of reservoirs smoother. The method is called ‘Microbial Improved Oil Recovery’ shortened to MIOR.

Researchers at Norwegian University of Science and Technology (NTNU) have made comprehensive studies of the MIOR method and have tested the effect of different varieties on the level of oil recovery.

- The winner of the tests is the Non-Surfactant Producing Bacteria, says Research Fellow Christian Crescente. It increased oil recovery by 4.2 per cent. The most important kind of testing is still to discover how these mechanisms can lead to an increase in oil recovery using bacteria.

If we understand what is happening, we can make plans and have fewer surprises when we start using bacteria in real reservoirs. We have to remember that surprises are expensive in the oil business. On the other hand one per cent higher oil recovery from Norwegian operative oil fields represents an estimated gross value of 300 billion Norwegian kroner.

Changing the drainage

The process of recovering oil requires a lot more than a long straw down to the bottom of the sea. The oil deposits are in porous rock. When the reservoir is initially breached, the oil will come out almost by itself, just like puncturing a balloon filled with water. As pressure in the reservoirs falls, the oil has to be assisted usually by water that is being pumped into the reservoir.

- Just as rivers find their way through the landscape, water will find its way through the reservoir. This means that oil that is beyond the well drainage will not surface from the reservoir, says Christian Crescente.

This is where the bacteria appear.
- We imagine that will they change the reservoir drainage and find their way to oil that was unrecoverable before, says the scientist.

Making drops slippery

This is only one of the effects oil-eating bacteria may have. Even though we normally think of oil in large barrels, it originally consists of numerous tiny drops in water-filled rock. The drops are so tiny that it is difficult to rinse them out with water.

- The tension in the surface of the oil drops causes them to be caught up in the pores of the rock like a blown-up balloon in a net, explains Christian Crescente, at the Department of Petroleum Engineering and Applied Geophysics, NTNU.

– But, when the bacteria eat some of the surface of the oil drops and this makes them more buoyant, just like soaping a balloon so that it could slip through the net mesh.

Bacteria also change the pore wall of the reservoir, and this makes it easier for the oil to flow through. In addition gases are created, which cause increased pressure in the reservoir, and this again makes it easier for the oil surface.

- A chain of chemical reactions occurs, which contribute to make the reservoir more slippery, explains Christian Crescente. This means that there will be more oil coming up.

Right kind, right method

There are already some types of bacteria in a reservoir, but bacteria can also be inserted and be successfully cultivated. It is important to do research on the specific bacteria that are going to be used in these reservoirs. Oil exists in different kinds of rock which need different kinds of bacteria.

It is all about cultivating the right kind of bacteria and in the right amount. The reservoir functions as its own ecosystem, and if the supply of nutrient is controlled the bacteria will multiply in number and speed.

Many advantages

Compared to other methods of oil recovery MIOR has plenty of advantages. It is cheaper than other methods. It can be used in most kinds of reservoirs. The chemicals that are needed can be made on the spot; in the reservoirs, and chemicals that can be added are cheap and easily available. The method requires minimal extra logistics and is therefore easy to use offshore.

Cheap, but difficult

The method has been in use in many parts of the world, with mixed experience. Lacking both knowledge and planning has barred the good results. Although the method is cheap it is also difficult. Knowledge about how the different types of bacteria function inside the various kinds of rocks that contain oil is the key to obtain a good degree of oil recovery.

- In the Norwegian sector Statoil Hydro has a MIOR project in the Norne fields. Nothing is published about it, so I do not know anything about the results, says Christian Crescente, - but this is an ongoing project, and I assume they have come up with some interesting data.

The goal is 70 per cent

The focus on technology improvements in the Norwegian sector has caused a yearly increase in the percentage of oil recovery. Early in the 1990s one estimated that 35 per cent oil recovery was possible, but it is 46 per cent today. The goal is that the oil recovery rate is to increase even more in the years to get and come close to 70 per cent.

By Hege J. Tunstad/The Reseach Magazine Gemini

Christian Crescente | alfa
Further information:
http://www.ipt.ntnu.no

More articles from Ecology, The Environment and Conservation:

nachricht Finding plastic litter from afar
19.11.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht Despite government claims, orangutan populations have not increased. Call for better monitoring
06.11.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Controlling organ growth with light

19.11.2018 | Life Sciences

New way to look at cell membranes could change the way we study disease

19.11.2018 | Life Sciences

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>