Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recipe for saving coral reefs: Add more fish

09.04.2015

Scientists seek to ensure survival of coral reefs outside of protected areas by calling for a minimum target of 500 kilograms of fish biomass per hectare

Fish are the key ingredients in a new recipe to diagnose and restore degraded coral reef ecosystems, according to scientists from the Australian Institute of Marine Science, WCS, James Cook University, and other organizations in a new study in the journal Nature.


Redfin butterflyfish in their coral reef habitat. Fish are the key ingredients in a new recipe to diagnose and restore degraded coral reef ecosystems, according to scientists from the Australian Institute of Marine Science, the WCS, James Cook University, and other organizations in a new study in the journal Nature.

Credit: Tim McClanahan/WCS

For overfished coral reef systems, restoring fish populations that perform key roles will in turn restore ecological functions critical to recovery. For moderately or lightly fished reefs, the recipe requires knowing which fish to catch, how many, and which to leave behind.

The authors assessed fish biomass and functional groups from more than 800 coral reefs worldwide and used them to estimate recovery periods for both lightly fished and overfished reefs. The scientists speculate that maintaining and restoring fish populations and the functions they provide can increase the resilience of reefs to large-scale threats such as climate change.

The coral reefs of the world are in crisis, endangered by a number of coastal threats such as overfishing, pollution, and coastal development as well as global threats such as climate change. According to the World Resources Institute, some 75 percent of the world's coral reefs are now threatened and more than 20 percent have disappeared since climate and fishing disturbances have accelerated in the past 30 years. At the same time, only 27 percent of the world's coral reefs are contained within marine protected areas.

"By studying remote and marine protected areas, we were able to estimate how much fish there would be on coral reefs without fishing, as well as how long it should take newly protected areas to recover," said M. Aaron MacNeil, Senior Research Scientist for the Australian Institute of Marine Science and lead author on the study. "This is important because we can now gauge the impact reef fisheries have had historically and make informed management decisions that include time frames for recovery."

"The methods used to estimate reef health in this study are simple enough that most fishers and managers can take the weight and pulse of their reef and keep it in the healthy range," said Tim McClanahan, WCS Senior Conservationist and a co-author on the study. "Fishers and managers now have the ability to map out a plan for recovery of reef health that will give them the best chance to adapt to climate change."

Coral reef experts agree that fishing is a primary driver in the degradation of reef function, which in turn has generated growing interest in finding fisheries management solutions to support reef resilience. Removing too many herbivorous and predatory fish species deprives coral reefs of critical ecosystem functions and the capacity to respond effectively to other disturbances. Knowing the right amount to leave behind can help local fisheries set clear limits to how many fish can be taken without threatening the ecosystem they rely on.

In response to this need, the study authors have created the first empirical estimate of coral reef fisheries recovery potential using data from 832 coral reefs in 64 locations around the world. The analysis included marine reserves and fishing closures as a control for estimating healthy fish biomass along with numerous sites along a spectrum of fishing intensity, from heavily fished reefs in the Caribbean to locations with low fishing rates and high fish "biomass" such as the Easter Islands. Despite the breadth of the data, some simple and consistent numbers emerged from the study.

Some of the key metrics uncovered in the study:

  • According to the analysis, a coral reef with no fishing averages 1,000 kilograms per hectare of fish biomass.

     

  • The fish biomass threshold for a collapsed reef--overfished to the point of nearly total ecosystem failure--is 100 kilograms per hectare.

     

  • The most degraded reefs lack browsers (rudderfish, parrotfish, and surgeonfish), scraper/excavators (parrotfish), grazers (rabbitfish, damselfish), and planktivores (fusiliers), so the first steps in reef recovery depends on allowing these species and the services they provide to return.

     

  • Coral reefs that maintained 500 kilograms of fish biomass per hectare (about 50 percent of an average reef's carrying capacity) were found to maintain ecological functions while sustaining local fisheries, providing fishers and marine managers with a critical target.

     

  • The authors found that 83 percent of the 832 reefs surveyed contained less than the 500 kilogram fish biomass threshold needed to maintain ecological integrity and stave off decline.

     

  • The models generated time estimates needed for both unregulated and partially regulated coral reef fisheries to recovery; a moderately fished coral reef system can recover within approximately 35 years on average, while the most depleted ecosystems may take as long as 59 years with adequate protection.

     

The study also highlights the benefits of alternative fisheries restrictions, including bans on specific fishing gear such as small-mesh nets and restrictions on herbivorous species. Approximately 64 percent of coral reefs with fishing regulations (including bans on specific fishing gear such as small-mesh nets and restrictions on fishing of herbivorous species) were found to maintain more than 50 percent of their potential fish biomass.

"Reef fish play a range of important roles in the functioning of coral reef ecosystems, for example by grazing algae and controlling coral-eating invertebrates, that help to maintain the ecosystem as a whole," said coauthor Nick Graham of James Cook University. "By linking fisheries to ecology, we can now make informed statements about ecosystem function at a given level of fish biomass."

"The finding that gear restrictions, species selection or local customs can also contribute to fish population recovery is compelling. It demonstrates that managers can use a range of different management strategies in areas where it may not be culturally feasible to establish permanent marine reserves," said coauthor Stacy Jupiter, WCS Melanesia Program Director. "Having a portfolio of management options provides flexibility to respond to local social and economic contexts. However, only completely closed no-take marine reserves successfully returned large predatory fish to the ecosystem."

###

YouTube video related to this story: https://www.youtube.com/watch?v=fDzMzyWZxL8&feature=youtu.be (Credit: WCS)
Fish are the key ingredients in a new recipe to diagnose and restore degraded coral reef ecosystems, according to scientists from the Australian Institute of Marine Science, WCS, James Cook University, and other organizations in a new study in the journal Nature.

This study was generously supported by the John D. and Catherine T. MacArthur Foundation, the Australian Institute of Marine Science, and the ARC Centre of Excellence for Coral Reef Studies.

The authors of the paper titled "Recovery potential of the world's coral reef fishes" are: M. Aaron MacNeil of the Australian Institute of Marine Science; Nicholas A.J. Graham and Joshua E. Cinner of James Cook University; Shaun K. Wilson of the Australian Department of Parks and Wildlife; Ivor D. Williams of the NOAA Pacific Islands Fisheries Science Center; Joseph Maina of the Wildlife Conservation Society and Newcastle University; Steven Newman of Newcastle University; Alan M. Friedlander of the University of Hawaii; Stacy Jupiter of the Wildlife Conservation Society; Nicholas V.C. Polunin of Newcastle University; and Tim R. McClanahan of the Wildlife Conservation Society.

Media Contact

John Delaney
jdelaney@wcs.org
718-220-3275

 @TheWCS

http://www.wcs.org 

John Delaney | EurekAlert!

Further reports about: Ecosystem Marine WCS Wildlife Wildlife Conservation Society biomass coral reef fishing

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>