Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid Coral Death

23.05.2012
Soil Erosion in Tropical Coastal Areas Accelerates Coral Death

Most people are fascinated by the colorful and exotic coral reefs, which form habitats with probably the largest biodiversity. But human civilisation is the top danger to these fragile ecosystems through climate change, oxygen depletion and ocean acidification. Industrialisation, deforestation and intensive farming in coastal areas are changing dramatically the conditions for life in the oceans.


Miriam Weber measures the oxygen concentration with hair-fine microsensors in a sediment layer, where the sediment was accumulated. If the organic load is increased in the two millimeter layer of sediments, the killing process will start. Blocked off from the light the algae will stop producing oxygen, microorganisms will start to decompose the organic matter, hydrogen sulfide is produced and kills the remaining cells.
C. Lott/HYDRA Institute/Max Planck Institute for Marine Microbiology, Bremen, c.lott@hydra-institute.com

Now Max Planck Scientists from Bremen together with their colleagues published their findings in the Proceedings of the National Academy of Sciences.PNAS 10.1073/pnas.1100715109

Reef forming stone corals inhabitat the light-flooded tropical shallow coastal regions 30 degree south and north of the equator. Coral polyps build the carbonate skeletons that form the extensive reefs over hundreds to thousands of years. Photosynthesis of the symbiotic algae inside the polyps produces oxygen and carbohydrates from carbon dioxide and water, thereby feeding the polyps.

Coral Bleaching, the slow demise
Since the 1980s the process of coral bleaching is under study: elevated temperatures of 1 to 3 degrees induce the algae to produce toxins. The polyps react by expelling the algae and the coral reef loses its color as if it was bleached. Without its symbionts the coral can survive only several weeks.
Rapid death in less than 24 hours
In coastal areas with excessive soil erosion where rivers flush nutrients, organics and sediments to the sea, corals can die quickly when exposed to sedimentation. Miriam Weber, scientist at the Max Planck Institute for Marine Microbiology in Bremen, explains the scientific approach.“Our idea was that a combination of enhanced deposition of sediments with elevated organic matter load and naturally occuring microorganisms can cause the sudden coral death. To get a handle on the diverse physical, chemical and biological parameters we performed our experiments at the Australian Institute for Marine Science (AIMS) in Townsville under controlled conditions in large containers (mesocosms), mimicking the natural habitat.“

The team of researchers found out the crucial steps:

Phase 1: When a two millimeter layer of sediment enriched with organic compounds covers the corals, the algae will stop photosynthesis, as the light is blocked.

Phase 2: If the sediments are organically enriched, then digestion of the organic material by microbial activity reduces oxygen concentrations underneath the sediment film to zero. Other microbes take over digesting larger carbon compounds via fermentation and hydrolysis thereby lowering the pH.

Phase 3: Lack of oxygen and acidic conditions harm small areas of coral tissue irreversibly. The dead material is digested by microbes producing hydrogen sulfide, a compound that is highly toxic for the remaining corals. The process gains momentum and the remainder of the sediment-covered coral surface is killed in less than 24 hours.

Miriam Weber: „First we thought that the toxic hydrogen sulfide is the first killer, but after intensive studies in the lab and mathematical modeling we could demonstrate that the organic enrichment is the proximal cause, as it leads to lack of oxygen and acidification, kicking the corals out of their natural balance. Hydrogen sulfide just speeds up the spreading of the damage. We were amazed that a mere 1% organic matter in the sediments is enough to trigger this process. The extreme effect of the combination of oxygen depletion and acidifation are of importance, keeping in mind the increasing acidification of the oceans. If we want to stop this destruction we need some political sanctions to protect coral reefs.“

Katharina Fabricius from the AIMS adds:“ This study has documented for the first time the mechanisms why those sediments that are enriched with nutrients and organic matter will damage coral reefs, while nutrient-poor sediments that are resuspended from the seafloor by winds and waves have little effect on reef health. Better land management practices are needed to minimise the loss of top soil and nutrients from the land where they are beneficial, and are not being washed into the coastal sea where they can cause so much damage to inshore coral reefs.“

Manfred Schloesser

For more information please contact

Dr. Miriam Weber, HYDRA Field Station/Centro Marino Elba, office +39 0565 988 027, Mobil +39 338 937 56 77, m.weber@hydra-institute.com

Dr. Dirk de Beer, Max Planck Institute for Marine Microbiology, office +49 421 2028 802, dbeer@mpi-bremen.de

Dr. Katharina Fabricius, AIMS Principal Research Scientist, k.fabricius@aims.gov.au

or the press officers of the Max Planck Institute for Marine Microbiology

Dr. Manfred Schloesser, +49 421 2028704, mschloes@mpi-bremen.de
Dr. Rita Dunker, +49 421 2028856, rdunker@mpi-bremen.de
Original article
Mechanisms of damage to corals exposed to sedimentation
Miriam Weber, Dirk de Beer, Christian Lott, Lubos Polerecky, Katharina Kohls, Raeid M. M. Abed, Timothy G. Ferdelman, and Katharina E. Fabricius. PNAS 10.1073/pnas.1100715109 PNAS May 21, 2012

http://www.pnas.org/content/early/2012/05/18/1100715109.abstract

Scientific Institutes

Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany

HYDRA Institute for Marine Sciences, Elba Field Station, 57034 Campo nell’Elba,
Italy;
Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
Biology Department, College of Science, Sultan Qaboos University, Muscat 123, Sultanate of Oman

Dr. Manfred Schloesser | Max-Planck-Institut
Further information:
http://www.mpi-bremen.de/

More articles from Ecology, The Environment and Conservation:

nachricht Lights on fishing nets save turtles and dolphins
06.12.2019 | University of Exeter

nachricht For some corals, meals can come with a side of microplastics
04.12.2019 | University of Washington

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

The Arctic atmosphere - a gathering place for dust?

09.12.2019 | Earth Sciences

New ultra-miniaturized scope less invasive, produces higher quality images

09.12.2019 | Information Technology

Discovery of genes involved in the biosynthesis of antidepressant

09.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>