Marine scientists working on the coral reefs of Palau have made two unexpected discoveries that could provide insight into corals' resistance and resilience to ocean acidification.
Corals living in more acidic bays around Palau's Rock Islands are surprisingly healthy.
Credit: Palau International Coral Reef Center
The team collected water samples at nine points along a transect that stretched from the open ocean, across a barrier reef, into a lagoon, and into the bays and inlets around the Rock Islands of Palau in the western Pacific Ocean.
With each location they found that the seawater became increasingly more acidic as they moved toward land.
"When we first plotted those data, we were shocked," said chemical oceanographer Kathryn Shamberger of the Woods Hole Oceanographic Institution (WHOI). "We had no idea the level of acidification we would find. We're looking at reefs today that have levels that we expect for the open ocean in that region by the end of the century."
Shamberger conducted the fieldwork with other WHOI researchers, including biogeochemist Anne Cohen, as well as with scientists from the Palau International Coral Reef Center.
The National Science Foundation (NSF) funded the research through its Ocean Acidification Program, part of the agency's Science, Engineering and Education for Sustainability Investment.
"This important study documents a coral reef system that's apparently resistant to the effects of ocean acidification," said David Garrison, program director in NSF's Division of Ocean Sciences. "Understanding what factors account for this will be critical follow-on research."
While ocean chemistry varies naturally at different locations, it is changing around the world due to increased levels of carbon dioxide in the atmosphere.
The ocean absorbs atmospheric carbon dioxide, which reacts with seawater, lowering the water's overall pH and making it more acidic.
This process also removes carbonate ions needed by corals and other organisms to build their skeletons and shells.
Corals growing in low pH conditions, both in laboratory experiments that simulate future conditions and in other naturally low pH ocean environments show a range of negative effects.
These include juveniles of various species with difficulty constructing skeletons, fewer varieties of corals, less coral cover, more algae growth and more porous corals with greater signs of erosion from other organisms.
The new research results, published in a paper in Geophysical Research Letters, a journal of the American Geophysical Union, explain the biological and geomorphological causes of the more acidic waters near Palau's Rock Islands.
The paper also describes a surprising second finding--that the corals living in those more acidic waters were unexpectedly diverse and healthy.
The unusual finding, contrary to what has been observed in other naturally low pH coral reef ecosystems, has important implications for the conservation of corals in all parts of the world.
"When you move from a high pH reef to a low pH neighboring reef, there are big changes, and they are negative changes," said Cohen, a co-author of the paper and principal investigaor of the project.
"However, in Palau wherever the water is most acidic, we see the opposite. There's a coral community that is more diverse, hosts more species and has greater coral cover than in the non-acidic sites.
"Palau is the exception to other places scientists have studied."
Through analysis of the water chemistry in Palau, the scientists found that the acidification is primarily caused by the shell-building done by organisms living in the water, called calcification, which removes carbonate ions from seawater.
A second reason is the organisms' respiration, which adds carbon dioxide to the water when they breathe.
"These things are all happening at every reef," said Cohen. "What's critical is the residence time of the seawater."
"In Palau's Rock Islands, the water sits in the bays for a long time before being flushed out," said Shamberger. "This is a big area that's a maze with lots of channels and inlets for the water to wind around.
"Calcification and respiration are continually happening at these sites while the water sits there, allowing the water to become more and more acidic. It's a little bit like being stuck in a room with a limited amount of oxygen--the longer you're in there without opening a window, you're using up oxygen and increasing carbon dioxide."
Ordinarily, she added, without fresh air coming in, it would become harder and harder for living things to thrive, "yet in the case of the corals in Palau, we're finding the opposite. Coral cover and diversity actually increase from the outer reefs into the Rock Islands."
The next steps are to determine whether the corals are genetically adapted to low pH, or whether Palau provides a "perfect storm" of environmental conditions.
"If it's the latter, it means that if you took those corals out of that specific environment and put them in another low pH environment that doesn't have the same combination of conditions, they wouldn't be able to survive," said Cohen. "But if they're genetically adapted to low pH, you could put them anywhere."
"These reef communities have developed under these conditions for thousands of years," said Shamberger. "These are conditions that are going to be occurring in a lot of the ocean by the end of the century.
"We don't know if other coral reefs will be able to adapt to ocean acidification--the time scale might be too short."
The scientists are careful to stress that their findings in Palau are different from every other low pH environment that has been studied.
"When we discover a reef like Palau where the coral communities are thriving under low pH, that's an exception," said Cohen.
"It doesn't mean that coral reefs around the globe are going to be fine under ocean acidification conditions. It does mean that there are some coral communities out there--and we've found one--that appear to have figured it out. But that doesn't mean that all coral reef ecosystems are going to figure it out."
This research was also funded by the WHOI Ocean Life Institute and The Nature Conservancy.
Media Contacts
Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov
Further reports about: > Geophysical > Oceanographic Institution > Pacific Ocean > Palau > WHOI > Woods Hole Oceanographic > acidic water > carbon dioxide > coral communities > coral reef > coral reef ecosystems > ocean acidification > ocean environment > open ocean > reef ecosystem
Urban growth causes more biodiversity loss outside of cities
10.12.2019 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig
Wie ganze Ökosysteme langfristig auf die Erderwärmung reagieren
10.12.2019 | Universität Wien
Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.
For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...
More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?
It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...
In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.
Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...
The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.
Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.
Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...
Anzeige
Anzeige
03.12.2019 | Event News
First International Conference on Agrophotovoltaics in August 2020
15.11.2019 | Event News
Laser Symposium on Electromobility in Aachen: trends for the mobility revolution
15.11.2019 | Event News
Supporting structures of wind turbines contribute to wind farm blockage effect
13.12.2019 | Physics and Astronomy
Chinese team makes nanoscopy breakthrough
13.12.2019 | Physics and Astronomy
Tiny quantum sensors watch materials transform under pressure
13.12.2019 | Materials Sciences