Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NOAA Scientists Link Shifting Atlantic Mackerel DistributionTo Environmental Factors, Changing Climate

16.08.2011
Stock Shifts Northeastward, Distributed Over Larger Area

NOAA scientists have found that environmental factors have changed the distribution patterns of Atlantic mackerel (Scomber scombrus), a marine species found in waters from Cape Hatteras to Newfoundland, shifting the stock northeastward and into shallower waters.

Atlantic mackerel migrate great distances on a seasonal basis to feed and spawn, and are sensitive to changes in water temperature. These findings could have significant implications for U.S. commercial and recreational mackerel fisheries that mostly occur during late winter and early spring.

In a paper published online in the American Fisheries Society journal Marine and Coastal Fisheries: Dynamics, Management and Ecosystem Science, researchers from NOAA’s Northeast Fisheries Science Center (NEFSC) reviewed annual changes in the winter and early-spring distribution of the Atlantic mackerel stock on the northeast U.S. continental shelf using spatial and standard statistical analyses of data collected on research trawl surveys.

“Our findings suggest that both the commercial and recreational Atlantic mackerel fisheries in the United States will probably be faced with more variable resource conditions in the future in terms of the winter distribution of the stock,” said study co-author Jon Hare of the Northeast Fisheries Science Center (NEFSC) laboratory in Narragansett, R.I. “The continental shelf is warming, increasing the area over which the stock can be distributed, while at the same time the distribution of the stock is shifting northward.”

Between 1968 and 2008, the overwintering distribution of the Northwest Atlantic stock has shifted about 250 kilometers (roughly 155 miles) to the north and about 50 kilometers (about 30 miles) to the east. The Atlantic mackerel population has also shifted from deeper off-shelf locations to shallower on-shelf areas where more area is now available within the mackerel’s preferred temperature range. Atlantic mackerel prefer water above 5 degrees Celsius (41 degrees Fahrenheit).

The environmentally-driven shift in distribution patterns will probably make it more difficult to find and catch Atlantic mackerel in certain areas in the future. The authors note that the Canadian coastal commercial fishery has continued to thrive while the U.S. commercial mackerel fishery during the winter has declined in recent decades. The change in distribution pattern could also impact other species, since mackerel plays a central role in the food web of the ecosystem. Atlantic mackerel are prey for a wide variety of species; they eat mostly small crustaceans and plankton.

“Atlantic mackerel is one of many species shifting their distribution range as a result of changing oceanographic and environmental patterns,” said Hare. "Those include regional temperature changes from year to year and larger scale environmental forces or climate drivers such as the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation (AMO).

Recent studies have indicated a northward shift in distributions of a number of species in this region (Nye et al., 2009), and work by Hare and others in 2010 documents a shift in the distribution and increase in biomass of Atlantic croaker (Micropogonias undulatus) associated with warming. This latest study on Atlantic mackerel by Hare and NOAA Fisheries co-authors William Overholtz (now retired) and Charles Keith of the NEFSC’s Woods Hole Laboratory in Massachusetts indicates that the changes in distribution are related to both interannual variability in temperature and a general warming trend on the Northeast Atlantic continental Shelf.

Despite the current high abundance of the stock, the changes could make it harder for U.S. commercial vessels to locate large schools of mackerel during the winter, when the majority of landings occur, because the fish are dispersed over a larger area within their preferred temperature range. The study also has implications for an early spring recreational Atlantic mackerel fishery in the mid-Atlantic region, which has declined steadily since the 1960s. The trends in recreational landings of Atlantic mackerel are unrelated to fishery regulations or management actions as there were no size limits, bag limits or constraining quotas in effect during this period.

“If the data from the late 1960s are indicative of the southernmost limit in the overwintering population of Atlantic mackerel, the change in the northern and eastern extent of the winter distribution of the stock is relatively large,” Hare said. “Although there has been considerable interannual variability in the stock’s distribution from the late 1960s through the first decade of the 21st century, the Atlantic mackerel stock has progressively moved from the offshore mid-Atlantic region to the southern New England shelf, and is now on the continental shelf more often in winter and much farther north and east of their previous winter positions, moving most recently onto Georges Bank.” .

NOAA Fisheries Service is dedicated to protecting and preserving our nation’s living marine resources and their habitat through scientific research, management and enforcement. NOAA Fisheries Service provides effective stewardship of these resources for the benefit of the nation, supporting coastal communities that depend upon them, and helping to provide safe and healthy seafood to consumers and recreational opportunities for the American public.

NOAA’s mission is to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and to conserve and manage our coastal and marine resources. Join us on Facebook, Twitter and our other social media channels.

Shelley Dawicki | EurekAlert!
Further information:
http://www.noaa.gov
http://www.nefsc.noaa.gov/press_release/2011/SciSpot/SS1104

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>