Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method monitors critical bacteria in wastewater treatment

06.02.2009
Researchers have developed a new technique using sensors to constantly monitor the health of bacteria critical to wastewater treatment facilities and have verified a theory that copper is vital to the proper functioning of a key enzyme in the bacteria.

The new method senses minute changes in chemistry related to bacterial health and yields results immediately, unlike conventional technologies, which require laboratory analyses taking at least a day. This immediacy could make it possible to detect when bacteria are about to stop processing waste and correct the problem before toxins are released into waterways, said Eric McLamore, a postdoctoral research associate in civil engineering.

The technique also is a departure from conventional methods because established techniques require that bacterial "biofilms" be damaged or destroyed in order to be tested.

"It's important to monitor intact living specimens to obtain accurate data, and our approach is both non-invasive and a real-time technique," said Marshall Porterfield, an associate professor of agricultural and biological engineering.

Findings will be detailed in the Feb. 15 issue of the journal Biotechnology and Bioengineering. McLamore, Porterfield and M. Katherine Banks, head of the School of Civil Engineering and a professor of civil engineering, wrote the paper, which is being highlighted in the journal's "spotlight" section.

The biofilms are a matrix of wastewater-treatment organisms that coat natural or synthetic surfaces. A healthy population of the bacteria must be maintained for wastewater treatment facilities to operate properly, McLamore said.

The researchers used the method to study a type of bacterium called Nitrosomonas europaea. The microorganisms are referred to as nitrifying bacteria because they convert toxic ammonia from human wastes and fertilizer runoff into compounds called nitrites, which are further broken down by other bacteria into harmless nitrogen gas.

Sensor data reveal how well the bacteria are absorbing ions, or electrically charged atoms and molecules, from the wastes. The "filtering flux sensor" measures ammonia and nitrite to reveal the ion flux, or how many ions are being transported into and out of the biofilm per minute.

“When bacterial biofilms are poisoned, sick and stressed they start to release ions, including potassium and calcium, which is an early warning signal," Porterfield said. "The bacteria in wastewater treatment facilities often detach from surfaces, causing not only the loss of bacteria that are the foundation of the wastewater treatment system but also the uncontrolled flushing of untreated wastes into waterways.

"So if you can catch those signals, if you can detect those ions being released in real time you can develop a remediation strategy to note that they are stressed and try to get them back."

The sensor probe moves robotically back and forth every three seconds, enabling the device to capture data in two locations.

The method is called self-referencing because it compares the difference between measurements taken in two positions with the same sensor. Using a single sensor to constantly take measurements in two locations is critical for revealing rapid changes in concentration. Since individual sensors have slightly differing performance, comparing data from two different sensors does not yield precise results.

"This type of sensor isn't new, but the technique for using it is," McLamore said. "Sensors have never been used this way to measure biofilm ammonia and nitrite flux. Self referencing has been used in other applications but never in environmental studies."

The same method also could be used to monitor other bacteria and different ions.

"We can use this self-referencing method on many compounds that exist in liquids," McLamore said. "We are using this technique to monitor other ions produced by Nitrosomonas europaea and also by other species of bacteria. Real environments contain mixed cultures of all sorts of different bacteria species, and we want to use our method to monitor these."

A specific enzyme in Nitrosomonas europaea converts the ammonia to nitrite. The researchers used their new technique to verify a theory proposed decades ago that copper at the enzyme's "active site" where ammonia binds is critical to enabling the conversion.

The researchers tested the theory by using chemicals to repeatedly alter the copper to another form and then change it back to its normal state, effectively turning the bacteria on and off.

"There has been mostly speculation in the literature that copper was even at the site," Porterfield said. "So, by doing an experiment where we can turn biochemical switches on and off in the bacteria we have validated the fact that copper is indeed at the active site, while at the same time demonstrating the power of this monitoring technique."

The copper findings could lead to ways of enhancing wastewater treatment by adding or reducing copper concentration in response to changing conditions.

"There are probably also numerous applications for this technique besides wastewater treatment," McLamore said.

The research was conducted at the Bindley Bioscience Center in Purdue's Discovery Park. The system is being tested on bacteria grown in laboratory "bioreactors."

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Marshall Porterfield, (765) 494-1190, porterf@purdue.edu
Eric McLamore, emclamor@purdue.edu
M. Katherine Banks, (765) 494-2256, kbanks@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>