Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of habitat causes double damage to species richness

02.04.2019

Loss and fragmentation of habitat are among the main reasons why biodiversity is decreasing in many places worldwide. Now, a research team with participation of the German Centre for Integrative Biodiversity Research (iDiv) and Martin Luther University Halle-Wittenberg (MLU) has established that the destruction of habitat causes double damage to biodiversity; if habitat patches disappear, not only do the species living there become extinct, but species richness in neighbouring patches also declines. The reason for this additional species loss is the large physical distances between the remaining habitat patches, the researchers write in the journal Ecology Letters.

For their study, scientists from the iDiv research centre, the Uni Halle and the WasserCluster Lunz research centre in Austria used long-term data on the presence of invertebrate zooplankton such as little crustaceans and rotifers in the saline ponds (“Salzlacken”) of the Seewinkel region of eastern Austria.


The soda pans in the Seewinkel region (Austria) are extraordinarily precious habitats.

Zsófia Horváth

These so-called soda pans are shallow ponds fed by precipitation and groundwater, which are usually less than a square kilometre in size, regularly dry out and can reach a very high salinity. In the 1950s, the 270 square kilometre area of study had more than 110 of these soda pans. Because of agricultural intensification, their numbers had dwindled to about 30 in 2010 - a decline of 70 percent within six decades. In 1957, ecologists found 64 species and in 2010 just 47 – a net loss of 17 species.

What were the reasons why so many plankton species disappeared from the soda pans? Was it just because their habitat was lost or were there other factors? In fact, the researchers found that, based on calculations and models, the decline in the number of soda pans from 110 to 30 should have resulted in the extinction of just four zooplankton species.

“Even if we had not taken into account the number of soda pans, but rather their area, we would have expected a decline of only nine species,” says Prof Jonathan Chase, head of the Biodiversity Synthesis Research Group at iDiv and Uni Halle and senior author of the study. Instead, 17 species went extinct from the region.

The researchers were, however, able to rule out that deterioration in the quality of the habitat played a role in the additional drop in the number of species; for example, changes in salinity and fluctuations in the nutrient content, water levels and turbidity of the ponds.

“So there must be another factor on landscape scale which is responsible for the extinction of these species in this region,” says first author Dr Zsófia Horváth. Horváth carried out the study at the WasserCluster Lunz research centre in Austria as well as at the iDiv research centre and Halle University.

Spatial processes can explain the sharp decline in species richness; when many soda pans disappear, the distances between those which remain are quite large, greatly reducing the ability of zooplankton to colonise new habitat patches – for example via the passive dispersal of eggs through wind, or as ‘hitchhikers’ on amphibians and birds.

“That species disappear locally happens again and again. But if they have no possibility to repopulate habitat patches, it becomes a problem,” says Jonathan Chase. If there are fewer soda pans in which a specific species dwells, and if the remaining soda pans are far from each other, the possibility for this species to redisperse is low, the scientist explains. This means that local extinction can no longer be countered by recolonization from the region.

Metacommunities, that is, communities of organisms that are distributed over multiple habitat patches and are potentially connected through moving individuals, hence experience an additional effect at the regional level when habitat patches disappear locally.

This has always been widely suspected, but has, up to now, rarely been proven because long-term studies are scarce. Thanks to the data on soda pans in the Seewinkel region, this gap in knowledge has now been closed. “This is important because this effect can now be taken more into consideration in future modelling – for example, when calculating expected losses of biodiversity when habitat is lost,” summarises Chase.

Wissenschaftliche Ansprechpartner:

Prof Jonathan Chase
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
Martin Luther University Halle-Wittenberg
Phone: +49 341 9733120
Email: jonathan.chase@idiv.de
Web: https://www.idiv.de/de/gruppen_und_personen/kerngruppen/biodiversitaetssynthese....

Dr Zsófia Horváth
WasserCluster Lunz, Austria
German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig
Martin Luther University Halle-Wittenberg
Phone: Please contact iDiv Media and Communications for mobile number.
Email: hhzsofia@gmail.com

Originalpublikation:

Horváth, Zsófia; Ptacnik, Robert; Vad, Csaba; Chase, Jonathan (published online on 1 April 2019): Habitat loss over six decades accelerates regional and local biodiversity loss via changing landscape connectance. Ecology Letters. https://doi.org/10.1111/ele.13260

Volker Hahn | idw - Informationsdienst Wissenschaft

Further reports about: Biodiversity Biodiversity Research habitat salinity soda pans species water levels

More articles from Ecology, The Environment and Conservation:

nachricht Rethinking the science of plastic recycling
24.10.2019 | DOE/Argonne National Laboratory

nachricht Sinking groundwater levels threaten the vitality of riverine ecosystems
04.10.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnetic tuning at the nanoscale

13.11.2019 | Physics and Astronomy

At future Mars landing spot, scientists spy mineral that could preserve signs of past life

13.11.2019 | Physics and Astronomy

Necessity is the mother of invention: Fraunhofer WKI tests utilization of low-value hardwood for wood fiberboard

13.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>