Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enabling a plastic-free microplastic hunt: "Rocket" improves detection of very small particles

22.10.2018

Environmental researchers at the Leibniz Institute for Baltic Sea Research Warnemünde (IOW) have developed a novel mobile device for recording microplastics in surface waters. They call it the “Rocket”, a design with which depending on the amount of suspended matter in the water up to 60 litres per minute can be sucked through four cartridge filters, and which is particularly advantageous for sampling the fine fraction of the microplastic in the range down to 10 µm. The scientists were specially challenged by the fact that plastic had to be avoided as far as possible. The successful results of the test phase have now been published by them in the international scientific journal “Water”.

Microplastics are omnipresent in the environment. Whether in the Arctic ice, the sand of the Sahara or the sediments of the deep sea – environmental researchers find these artificial particles everywhere. Figures on how much of this occurs in the environment, however, are usually based on estimates only.


The "Rocket" operating at Warnemünde beach

Robin Lenz / IOW


Franziska Klaeger, project co-oordinator of the BMBF project MicroCatch_Balt in front of the "Rocket"

Kristin Beck / IOW

Due to its variable behaviour in the environment, its similarity to natural components and the fact that microplastics are often masked by biofilm growth, it is difficult and time-consuming to record these particles.

To make matters worse, in our plastic world the postulate of contamination-free sampling also poses an enormous challenge: whether it is the clothing of the sample taker, the sampling equipment or the sample vessels themselves: any plastic material must be avoided when microplastics are detected.

Robin Lenz and Matthias Labrenz, the authors of the scientific article in “Water”, are investigating the main entry pathways for microplastics into the Baltic Sea along a river system, and under which circumstances microplastics already introduced in the course of the river can be removed again. Their “model river” is the Warnow. For the extensive sampling campaigns, they now developed a device, which, in its silvery aluminium box equipped with hoses and levers, looks like the props of a 70s science fiction movie and was therefore nicknamed “The Rocket”.

“Rocket” offers many advantages over conventional sampling techniques. Two effects in particular had to be avoided: Conventional techniques, which usually use plankton nets for sampling, are particularly prone to errors in fine microplastics in the micrometer range.

Either the mesh size of the nets is too large to catch the very small microplastic fraction, or, in the case of very small mesh sizes, the nets quickly clog. Swirls in the area of the net opening then drive the microplastic out of the net again.

This does no longer happen with the parallel cartridge filters in the closed “Rocket” system. All particles larger than 10 µm are collected. Another disadvantage of the net technology was eliminated with the “Rocket”, too: The device is constructed almost completely without plastic.

Only one type of plastic, the relatively rare PTFE (polytetrafluoroethylene), was used inside the closed system. This means that contamination-free sampling can be assumed for all other plastic polymers.

The MicroCatch_Balt project is funded by the German Federal Ministry of Education and Research (BMBF) within the research focus Plastics in the Environment. The research focus “Plastics in the environment – Sources, sinks, solutions” is part of the Green Economy lead initiative of the BMBF framework programme “Research for Sustainable Development” (FONA3).

Press and public relation:
Dr. Barbara Hentzsch | +49 381 5197-102 | barbara.hentzsch@io-warnemuende.de
Dr. Kristin Beck | +49 381 5197-135 | kristin.beck@io-warnemuende.de

IOW is a member of the Leibniz Association with currently 93 research institutes and scientific infrastructure facilities. The focus of the Leibniz Institutes ranges from natural, engineering and environmental sciences to economic, social and space sciences as well as to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 19.100 people, of whom 9.900 are scientists. The total budget of the institutes is 1.9 billion Euros. (http://www.leibniz-association.eu)

Wissenschaftliche Ansprechpartner:

Robin Lenz | robin.lenz@io-warnemuende.de
PD Dr. Matthias Labrenz | matthias.labrenz@io-warnemuende.de
Working Group Environmental Microbiology, Leibniz Institute for Baltic Sea Research Warnemünde

Originalpublikation:

Lenz, R.; Labrenz, M.: Small Microplastic Sampling in Water: Development of an Encapsulated Filtration Device. Water 2018, 10, 1055; DOI: 10.3390/w10081055; URL: http://www.mdpi.com/2073-4441/10/8/1055.

Dr. Barbara Hentzsch | idw - Informationsdienst Wissenschaft

More articles from Ecology, The Environment and Conservation:

nachricht New exhaust gas measurement registers ultrafine pollutant particles for the first time
21.01.2020 | Technische Universität Graz

nachricht ZMT-Expert supports the implementation of the ambitious marine reserve in Palau
17.01.2020 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Towards better anti-cancer drugs: New insights into CDK8, an important human oncogene

28.01.2020 | Life Sciences

Rice lab turns trash into valuable graphene in a flash

28.01.2020 | Materials Sciences

AI can jump-start radiation therapy for cancer patients

28.01.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>