Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Litter is present throughout the world’s oceans: 1,220 species affected

27.03.2017

The AWI Litterbase portal is the first to gather all published scientific data on marine litter

Where is marine litter concentrated, and which species and ecosystems does it affect? Researchers at the Alfred Wegener Institute have for the first time compiled all scientific data published on marine litter in a single, comprehensive database, now accessible from the online portal AWI Litterbase (http://www.litterbase.org).


Weltweite Verteilung von Müll und Mikroplastik in aquatischen Lebensräumen (Anzahl pro Quadratkilometer) (Status 23.03.2017). Laufend aktualisierte Grafiken gibt es unter: http://litterbase.awi.de/interaction_graph. Grafik: Alfred-Wegener-Institut / AWI-Litterbase

Here, both the distribution of litter and its interactions with organisms are presented in global maps. In addition, the regularly updated datasets are fed into graphic analyses, which show e.g. that seabirds and fish are particularly affected by litter. The latest interaction analysis shows that 34 per cent of the species monitored ingest litter, 31 per cent colonise it, and 30 per cent get entangled or otherwise trapped in it (for all figures: valid as of 23 March 2017).

The total number of affected species is rising steadily and is currently at 1,220 – more than twice the number reported in the last review article. These numbers will change as the database is being updated regularly.

“In AWI Litterbase we’ve for the first time analysed all groups of organisms, which were studied in connection with litter, and presented in map form,” says Dr Melanie Bergmann from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI). The biologist has been researching deep-sea litter for several years, and developed the AWI Litterbase together with her colleagues Dr Lars Gutow and Mine Tekman.

The team’s motivation: previous compilations of scientific data never included all datasets, because there were too many differences in the methods applied by the various research groups.

“Our global maps also show data in different units. However, we intentionally designed Litterbase with this feature, since it allows users to filter results by type of unit. In this way, values using the same unit can easily be compared –for the first time, for litter in different regions and ecosystems,” explains Lars Gutow, highlighting one of the database’s central features. “At the same time, Litterbase is also of tremendous scientific value. Our database will allow us to assess and better understand the global quantities and distribution patterns of litter in the ocean.”

According to Bergmann, “The maps document where researchers have identified litter. But it’s important to bear in mind that the blank areas of the map don’t necessarily represent clean regions; instead they’re blind spots.”

This information, too, is extremely valuable and helps identify areas where research efforts need to be intensified. For example, it’s readily apparent on the global map that numerous studies have been conducted in the Mediterranean; they indicate that this is one of the most polluted regions in the world in this regard. Yet there have been very few publications from Africa, the open ocean or the Dead Sea, so we still know precious little about the situation in vast expanses of the world’s oceans.

In the course of their literature research, Gutow, Tekman and Bergmann were surprised by the variety of sources where marine litter was described. As the team recalls: “Some litter sightings can be found in publications that actually have nothing to do with litter, like papers on the coral gardens of the Mediterranean or the anthropogenic effects that activities like fishing have on the seafloor.”

And Melanie Bergmann adds: “While compiling Litterbase, I discovered a cache of old data on litter in the Antarctic, which the signatory countries of the Antarctic Treaty gathered on a regular basis. In addition, the ingestion of microplastic at the beginning of the food chain was investigated for various groups of plankton and unicellular organisms as far back as the 1980s. As such, Litterbase will also help us rediscover ‘old’ and in some cases forgotten findings.”

For government authorities, politicians and journalists, not to mention teachers and students, both Gutow and Bergmann are much sought-after experts. The database’s analysis tools allow all of these groups to create global estimates of which animal groups are reportedly hardest hit by marine litter, and what the litter consists of in different ecosystems. Further, all of the scientific literature used to create the Litterbase is also linked, helping interested users to pursue research of their own.

AWI Litterbase is sponsored by the Helmholtz Association’s Earth System Knowledge Platform (ESKP: http://www.eskp.de/), where the eight Helmholtz Centres from the research field Earth and Environment pool their expertise to convey the interconnections between environmental hazards, climate change and pollutants.

Notes for Editors:

Your scientific contact persons are:

• Dr Melanie Bergmann, tel. +49 471 4831-1739 (e-mail: Melanie.Bergmann(at)awi.de)
• Dr Lars Gutow, tel. +49 471 4831-1708 (e-mail: Lars.Gutow(at)awi.de)

Your contact person at the Dept. of Communications and Media Relations is Dr Folke Mehrtens, tel. +49 471 4831-2007 (e-mail: Folke.Mehrtens(at)awi.de).

Printable images are available in the online version of this press release: http://www.awi.de/nc/en/about-us/service/press.html

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft

More articles from Ecology, The Environment and Conservation:

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>