Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More functionalities: Microstructuring large surfaces with a UV-laser system

05.07.2018

Coherent operates a high-performance excimer laser system for processing large surfaces in partnership with the Fraunhofer Institute for Laser Technology ILT in Aachen, Germany. Using the short-wave laser system, the partners aim to develop new methods for carefully controlled surface processing. Preparation of CFRP adhesive surfaces is just one example of the numerous potential applications.

In the last few years, the rapid growth in display manufacture for mobile devices has ushered in a considerable renaissance for excimer lasers. Operating in the UV range, they allow precise modification of silicon as well as ablation of ultra-thin polymer layers using the laser lift-off process. However, the potential applications of this laser technology are far from exhausted.


Handover of the Coherent system LineBeam 155 to Fraunhofer ILT.

© Fraunhofer ILT, Aachen, Germany / A. Steindl


A new excimer laser system is now available at Fraunhofer ILT for process development in surface microprocessing.

© Coherent, Inc.

In a collaborative project spanning several years, Coherent and Fraunhofer ILT plan to develop novel procedures with the excimer laser. To this end, Coherent has provided a research team from Fraunhofer ILT with a line beam system.

The system’s laser line is 155 mm long, 0.3 mm wide, and its stabilized UV output at a wavelength of 248 nm is more than 150 W. A masked imaging system can also be connected, if required. UV radiation has a short wavelength and each laser pulse can reach an energy of more than 1 J, allowing both removal of various materials at a micrometer resolution and rapid, selective processing of layer systems in the micro- and nanometer range. “No other system can match this combination of precision and processing speed,” says Dr. Ralph Delmdahl, Coherent’s Product Marketing Manager.

New laser processes also suitable for lightweight construction

“Our goal is to qualify new applications and new materials that can be subsequently scaled up for industrial production,” explains Dr. Arnold Gillner, Head of Ablation and Joining at Fraunhofer ILT. One of the first areas of focus is processing of fiber composites.

The excimer laser, for instance, can be employed for carefully controlled and precise preparation of carbon fiber reinforced plastic (CFRP) adhesive surfaces. Another application is large-surface removal of release layers in the production of CFRP components.

This might have as much potential in aviation as it has in shipbuilding. Targeted modification of surfaces is a further goal of the cooperation. Such modification provides technical components with additional functionalities, which could otherwise be manufactured only with the aid of expensive coatings.

Crucially, the low penetration depth of the UV radiation enables the surface to be functionalized at the same time as maintaining a very low heat input. This makes the excimer laser, due to its very short wavelength, superior even to new ultrashort pulse lasers.

The potential applications are extremely diverse. In addition to evaluating procedures for processing strategies, the laser can also be used to investigate novel materials for their machinability. One possible application is the efficient production and modification of nanoscale graphene layers, in which the short wavelength of 248 nm – and the associated high photon energy – plays a decisive role.

Research projects like these indicate that Coherent and Fraunhofer ILT are looking to the long-term in their collaboration. Both partners can use the system jointly with their customers for projects. This provides small and medium-sized companies, in particular, with a potential technological basis to develop new products with innovative functionalities.

Contact

Dipl.-Phys. Christian Hördemann
Micro and Nano Structuring Group
Telephone +49 241 8906-8013
christian.hoerdemann@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: CFRP ILT Lasertechnik UV radiation carbon fiber fiber lasers potential applications wavelength

More articles from Machine Engineering:

nachricht A factory to go
04.07.2018 | Fraunhofer Institute for Manufacturing Engineering and Automation IPA

nachricht New kinematics for milling – customized, high-precision manufacturing
04.07.2018 | Fraunhofer-Gesellschaft

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>