Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More functionalities: Microstructuring large surfaces with a UV-laser system

05.07.2018

Coherent operates a high-performance excimer laser system for processing large surfaces in partnership with the Fraunhofer Institute for Laser Technology ILT in Aachen, Germany. Using the short-wave laser system, the partners aim to develop new methods for carefully controlled surface processing. Preparation of CFRP adhesive surfaces is just one example of the numerous potential applications.

In the last few years, the rapid growth in display manufacture for mobile devices has ushered in a considerable renaissance for excimer lasers. Operating in the UV range, they allow precise modification of silicon as well as ablation of ultra-thin polymer layers using the laser lift-off process. However, the potential applications of this laser technology are far from exhausted.


Handover of the Coherent system LineBeam 155 to Fraunhofer ILT.

© Fraunhofer ILT, Aachen, Germany / A. Steindl


A new excimer laser system is now available at Fraunhofer ILT for process development in surface microprocessing.

© Coherent, Inc.

In a collaborative project spanning several years, Coherent and Fraunhofer ILT plan to develop novel procedures with the excimer laser. To this end, Coherent has provided a research team from Fraunhofer ILT with a line beam system.

The system’s laser line is 155 mm long, 0.3 mm wide, and its stabilized UV output at a wavelength of 248 nm is more than 150 W. A masked imaging system can also be connected, if required. UV radiation has a short wavelength and each laser pulse can reach an energy of more than 1 J, allowing both removal of various materials at a micrometer resolution and rapid, selective processing of layer systems in the micro- and nanometer range. “No other system can match this combination of precision and processing speed,” says Dr. Ralph Delmdahl, Coherent’s Product Marketing Manager.

New laser processes also suitable for lightweight construction

“Our goal is to qualify new applications and new materials that can be subsequently scaled up for industrial production,” explains Dr. Arnold Gillner, Head of Ablation and Joining at Fraunhofer ILT. One of the first areas of focus is processing of fiber composites.

The excimer laser, for instance, can be employed for carefully controlled and precise preparation of carbon fiber reinforced plastic (CFRP) adhesive surfaces. Another application is large-surface removal of release layers in the production of CFRP components.

This might have as much potential in aviation as it has in shipbuilding. Targeted modification of surfaces is a further goal of the cooperation. Such modification provides technical components with additional functionalities, which could otherwise be manufactured only with the aid of expensive coatings.

Crucially, the low penetration depth of the UV radiation enables the surface to be functionalized at the same time as maintaining a very low heat input. This makes the excimer laser, due to its very short wavelength, superior even to new ultrashort pulse lasers.

The potential applications are extremely diverse. In addition to evaluating procedures for processing strategies, the laser can also be used to investigate novel materials for their machinability. One possible application is the efficient production and modification of nanoscale graphene layers, in which the short wavelength of 248 nm – and the associated high photon energy – plays a decisive role.

Research projects like these indicate that Coherent and Fraunhofer ILT are looking to the long-term in their collaboration. Both partners can use the system jointly with their customers for projects. This provides small and medium-sized companies, in particular, with a potential technological basis to develop new products with innovative functionalities.

Contact

Dipl.-Phys. Christian Hördemann
Micro and Nano Structuring Group
Telephone +49 241 8906-8013
christian.hoerdemann@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: CFRP ILT Lasertechnik UV radiation carbon fiber fiber lasers potential applications wavelength

More articles from Machine Engineering:

nachricht Fraunhofer scientists develop universally applicable broadband eddy current electronics
09.04.2019 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht One third less consumption: Industry & research work together on fuel-efficient SI engines
04.03.2019 | Forschungsvereinigung Verbrennungskraftmaschinen e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>