Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More functionalities: Microstructuring large surfaces with a UV-laser system

05.07.2018

Coherent operates a high-performance excimer laser system for processing large surfaces in partnership with the Fraunhofer Institute for Laser Technology ILT in Aachen, Germany. Using the short-wave laser system, the partners aim to develop new methods for carefully controlled surface processing. Preparation of CFRP adhesive surfaces is just one example of the numerous potential applications.

In the last few years, the rapid growth in display manufacture for mobile devices has ushered in a considerable renaissance for excimer lasers. Operating in the UV range, they allow precise modification of silicon as well as ablation of ultra-thin polymer layers using the laser lift-off process. However, the potential applications of this laser technology are far from exhausted.


Handover of the Coherent system LineBeam 155 to Fraunhofer ILT.

© Fraunhofer ILT, Aachen, Germany / A. Steindl


A new excimer laser system is now available at Fraunhofer ILT for process development in surface microprocessing.

© Coherent, Inc.

In a collaborative project spanning several years, Coherent and Fraunhofer ILT plan to develop novel procedures with the excimer laser. To this end, Coherent has provided a research team from Fraunhofer ILT with a line beam system.

The system’s laser line is 155 mm long, 0.3 mm wide, and its stabilized UV output at a wavelength of 248 nm is more than 150 W. A masked imaging system can also be connected, if required. UV radiation has a short wavelength and each laser pulse can reach an energy of more than 1 J, allowing both removal of various materials at a micrometer resolution and rapid, selective processing of layer systems in the micro- and nanometer range. “No other system can match this combination of precision and processing speed,” says Dr. Ralph Delmdahl, Coherent’s Product Marketing Manager.

New laser processes also suitable for lightweight construction

“Our goal is to qualify new applications and new materials that can be subsequently scaled up for industrial production,” explains Dr. Arnold Gillner, Head of Ablation and Joining at Fraunhofer ILT. One of the first areas of focus is processing of fiber composites.

The excimer laser, for instance, can be employed for carefully controlled and precise preparation of carbon fiber reinforced plastic (CFRP) adhesive surfaces. Another application is large-surface removal of release layers in the production of CFRP components.

This might have as much potential in aviation as it has in shipbuilding. Targeted modification of surfaces is a further goal of the cooperation. Such modification provides technical components with additional functionalities, which could otherwise be manufactured only with the aid of expensive coatings.

Crucially, the low penetration depth of the UV radiation enables the surface to be functionalized at the same time as maintaining a very low heat input. This makes the excimer laser, due to its very short wavelength, superior even to new ultrashort pulse lasers.

The potential applications are extremely diverse. In addition to evaluating procedures for processing strategies, the laser can also be used to investigate novel materials for their machinability. One possible application is the efficient production and modification of nanoscale graphene layers, in which the short wavelength of 248 nm – and the associated high photon energy – plays a decisive role.

Research projects like these indicate that Coherent and Fraunhofer ILT are looking to the long-term in their collaboration. Both partners can use the system jointly with their customers for projects. This provides small and medium-sized companies, in particular, with a potential technological basis to develop new products with innovative functionalities.

Contact

Dipl.-Phys. Christian Hördemann
Micro and Nano Structuring Group
Telephone +49 241 8906-8013
christian.hoerdemann@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: CFRP ILT Lasertechnik UV radiation carbon fiber fiber lasers potential applications wavelength

More articles from Machine Engineering:

nachricht BladeFactory research project: Quicker rotor blade production and a higher quality result
12.10.2018 | Fraunhofer-Institut für Windenergiesysteme IWES

nachricht “TwoCure”: the New Dimension in Resin-Based 3D Printing
11.10.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

RUDN chemist tested a new nanocatalyst for obtaining hydrogen

18.10.2018 | Life Sciences

Massive organism is crashing on our watch

18.10.2018 | Earth Sciences

Electrical enhancement: Engineers speed up electrons in semiconductors

18.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>