Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring filling levels in automated Industry 4.0

03.08.2015

Waycon Positionsmesstechnik GmbH is ideally equipped for the future

An automated measurement of substance filling levels in storage containers is essential in Industry 4.0. For a secure and stable production process, continuous monitoring of filling levels is an absolute prerequisite. Waycon Positionsmesstechnik offers needs-based, automated monitoring of filling levels for many industries.

These can be split into two main types:

  • Monitoring the filling level for the feeding and timing of the filling process as well as the retrieval of stock status.
  • Initiating safety measures (e.g. shutting down) when a maximum or minimum filling level is reached

In the first case, we are talking about continuous filling level control. The filling level of the monitored substance can be registered at any time at any position in the container and ensures a continuous reading. The advantage of this is that capacity planning can be adapted for irregular use at any time in the production process.

In the second case, we are dealing with a “level detection”. Predefined maximum and/or minimum filling levels are defined and monitored throughout the production process. If the relevant level limit is exceeded or too low, an action is initiated. This monitoring method is best suited to continuous processes for the timely supply or removal of necessary substances. The level detection also serves as a safety measure, for example to avoid overfilling due to system shut down.

The different methods of filling level measuring

Filling level measuring works via contact or non-contact sensors which determine the distance between the sensor and the object being measured.

Ultrasound filling level measuring

Classic filling level measuring works with the help of ultrasound sensors. Measurement with ultrasound sensors is a non-contact method and is suitable for both continuous filling level control and level detection. Ultrasound sensors release high frequency oscillations, which are reflected through the object being measured. The time difference between the moments of “sending and receiving” is calculated. The advantage of this method is that it is not dependent on the substance used, e.g. oil or water.

Measuring filling level with the magnetostrictive principle

Magnetostrictive sensors are non-contact and free from wear.
A short, constant electrical pulse is sent via a waveguide. A freely moving position magnet reacts to the electrical pulse with a reversed torsion wave. Moving the position magnet produces a different run time for the response pulse. With the help of a pulse converter, this is finally converted into an electronic measurement signal. The magnet is embedded in a float and guarantees permanent registration of the filling level. Magnetostriction is non-contact but the float must make contact with the substance being measured.

Filling level measuring using draw wire sensors

Draw wire sensors are a contact measurement method. A stainless steel wire is coiled in a single layer around a drum with a pre-stressed mainspring. The measurement wire is attached to the object being measured and the is drawn from the drum if the position is changed. The drum’s axis is firmly attached to an electronic element, which converts the mechanical turning movement into a proportional electronic signal. For the filling level measuring, the measurement wire is connected to a float which is in contact with the measuring material.

Filling level measuring with the capacity principle

Capacity sensors measure changes in capacity. Thus the sensor and the object being measured always create a plate, as you find with a plate capacitor. The electronic field in between them is recorded and changes according to the distance. This measurement method is non-contact and is suitable for continuous monitoring and level detection.

WayCon offers suitable measurement engineering for all uses

With WayCon’s intelligent sensor solutions, measuring filling levels is easy and efficient. The Taufkirchen company’s broad production spectrum can be used in practically any industry and for any use. Companies are already equipped for Industry 4.0 with WayCon sensors for their filling level measuring.

You can find more information at www.waycon.de/home/  or
Product portfolio: www.waycon.de/produkte

Background information

WayCon Positionsmesstechnik GmbH has been developing and producing filling level, position and distance sensors since 1999. With their head offices in Taufkirchen near Munich, a second office in Brühl near Cologne and distributors in 28 countries, the innovative company supplies its products worldwide. Our goal is to provide our clients with optimal measurement engineering solutions: From high quality sensors from our standard range to client-specific solutions, from the prototype to range - for different usage areas in industry and research. The products, manufactured in Taufkirchen, are subject to the strictest quality requirements and are delivered without exception with a calibration certificate.


Contact

WayCon Positionsmesstechnik GmbH
Marcus Venghaus
Mehlbeerenstraße 4
82024 Taufkirchen

Email: presse@waycon.de
Website: www.waycon.de/home/ 
Product portfolio: www.waycon.de/produkte 

Cecilia Repgen | WayCon Positionsmesstechnik GmbH

More articles from Machine Engineering:

nachricht More functionalities: Microstructuring large surfaces with a UV-laser system
05.07.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A factory to go
04.07.2018 | Fraunhofer Institute for Manufacturing Engineering and Automation IPA

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>