Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thin engineered material perfectly redirects and reflects sound

11.04.2018

Metamaterial device controls transmission and reflection of acoustic waves

Metamaterials researchers at Duke University have demonstrated the design and construction of a thin material that can control the redirection and reflection of sound waves with almost perfect efficiency.


This metamaterial surface has been engineered to perfectly and simultaneously control the transmission and reflection of incoming sound waves.

Credit: Junfei Li


The spacing between the rows and the amount that each individual column is filled in work together to perfectly control the transmission and reflection of a specific frequency of sound as it passes through.

Credit: Junfei Li

While many theoretical approaches to engineer such a device have been proposed, they have struggled to simultaneously control both the transmission and reflection of sound in exactly the desired manner, and none have been experimentally demonstrated.

The new design is the first to demonstrate complete, near-perfect control of sound waves and is quickly and easily fabricated using 3-D printers. The results appear online April 9 in Nature Communications.

"Controlling the transmission and reflection of sound waves this way was a theoretical concept that did not have a path to implementation -- nobody knew how to design a practical structure using these ideas," said Steve Cummer, professor of electrical and computer engineering at Duke. "We solved both of those problems. Not only did we figure out a way to design such a device, we could also make one and test it. And lo and behold, it actually works."

The new design uses a class of materials called metamaterials -- artificial materials that manipulate waves like light and sound through their structure rather than their chemistry. For example, while this particular metamaterial is made out of 3-D printed plastic, it's not the properties of the plastic that are important -- it's the shapes of the device's features that allow it to manipulate sound waves.

The metamaterial is made of a series of rows of four hollow columns. Each column is nearly one-half of an inch on a side with a narrow opening cut down the middle of one side, making it look somewhat like the world's deepest Ethernet port. While the device demonstrated in the paper is 1.6 inches tall and nearly 3.5 feet long, its height and width are irrelevant -- it could theoretically stretch on forever in either direction.

The researchers control how the device manipulates sound through the width of the channels between each row of columns and the size of the cavity inside each individual column. Some columns are wide open while others are nearly closed off.

To understand why, think of someone blowing air across the top of a glass bottle -- the pitch the bottle makes depends on the amount of liquid left inside the bottle. Similarly, each column resonates at a different frequency depending on how much of it is filled in with plastic.

As a sound wave travels through the device, each cavity resonates at its prescribed frequency. This vibration not only affects the speed of the sound wave but interacts with its neighboring cavities to tame both transmission and reflection.

"Previous devices could shape and redirect sound waves by changing the speed of different sections of the wave front, but there was always unwanted scattering," said Junfei Li, a doctoral student in Cummer's laboratory and first author of the paper. "You have to control both the phase and amplitude of both the transmission and reflection of the wave to approach perfect efficiencies."

To make matters more complicated, the vibrating columns not only interact with the sound wave, but also with their surrounding columns. Li needed to write an 'evolutionary computer optimization program,' to work through all the design permutations.

The researchers feed the program the boundary conditions needed on each side of the material to dictate how they want the outgoing and reflected waves to behave. After trying a random set of design solutions, the program mixes various combinations of the best solutions, introduces random "mutations," and then runs the numbers again. After many iterations, the program eventually "evolves" a set of design parameters that provide the desired result.

In the paper, Cummer, Li and colleagues demonstrate that one such set of solutions can redirect a sound wave coming straight at the metamaterial to a sharp 60-degree outgoing angle with an efficiency of 96 percent. Previous devices would have been lucky to achieve 60 percent efficiencies under such conditions. While this particular setup was designed to control a sound wave at 3,000 Hertz -- a very high pitch not dissimilar to getting a "ringing in your ears" -- the metamaterials could be scaled to affect almost any wavelength of sound.

The researchers and their collaborators are next planning to transfer these ideas to the manipulation of sound waves in water for applications such as sonar, although there aren't any ideas for applications in air. At least not yet.

"When talking about waves, I often fall back on the analogue of an optical lens," said Cummer. "If you tried to make really thin eyeglasses using the same approaches that these sorts of devices have been using for sound, they would stink. This demonstration now allows us to manipulate sound waves extremely accurately, like a lens for sound that would be way better than previously possible."

###

This work was supported by the Office of Naval Research (N00014-13-1-0631) and the National Science Foundation (1641084).

Learn More about Metamaterials at Duke.

CITATION: "Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts." Junfei Li, Chen Shen, Ana Diaz-Rubio, Sergei A. Tretyakov and Steven A. Cummer. Nature Communications, 2018. DOI: 10.1038/s41467-018-03778-9

Media Contact

Ken Kingery
ken.kingery@duke.edu
919-660-8414

 @DukeU

http://www.duke.edu 

Ken Kingery | EurekAlert!
Further information:
http://pratt.duke.edu/about/news/sound-control
http://dx.doi.org/10.1038/s41467-018-03778-9

More articles from Power and Electrical Engineering:

nachricht Researchers produce synthetic Hall Effect to achieve one-way radio transmission
13.09.2019 | University of Illinois College of Engineering

nachricht Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly
13.09.2019 | University of Pennsylvania

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Too much of a good thing: overactive immune cells trigger inflammation

16.09.2019 | Life Sciences

Scientists create a nanomaterial that is both twisted and untwisted at the same time

16.09.2019 | Materials Sciences

Researchers have identified areas of the retina that change in mild Alzheimer's disease

16.09.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>