Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thin engineered material perfectly redirects and reflects sound

11.04.2018

Metamaterial device controls transmission and reflection of acoustic waves

Metamaterials researchers at Duke University have demonstrated the design and construction of a thin material that can control the redirection and reflection of sound waves with almost perfect efficiency.


This metamaterial surface has been engineered to perfectly and simultaneously control the transmission and reflection of incoming sound waves.

Credit: Junfei Li


The spacing between the rows and the amount that each individual column is filled in work together to perfectly control the transmission and reflection of a specific frequency of sound as it passes through.

Credit: Junfei Li

While many theoretical approaches to engineer such a device have been proposed, they have struggled to simultaneously control both the transmission and reflection of sound in exactly the desired manner, and none have been experimentally demonstrated.

The new design is the first to demonstrate complete, near-perfect control of sound waves and is quickly and easily fabricated using 3-D printers. The results appear online April 9 in Nature Communications.

"Controlling the transmission and reflection of sound waves this way was a theoretical concept that did not have a path to implementation -- nobody knew how to design a practical structure using these ideas," said Steve Cummer, professor of electrical and computer engineering at Duke. "We solved both of those problems. Not only did we figure out a way to design such a device, we could also make one and test it. And lo and behold, it actually works."

The new design uses a class of materials called metamaterials -- artificial materials that manipulate waves like light and sound through their structure rather than their chemistry. For example, while this particular metamaterial is made out of 3-D printed plastic, it's not the properties of the plastic that are important -- it's the shapes of the device's features that allow it to manipulate sound waves.

The metamaterial is made of a series of rows of four hollow columns. Each column is nearly one-half of an inch on a side with a narrow opening cut down the middle of one side, making it look somewhat like the world's deepest Ethernet port. While the device demonstrated in the paper is 1.6 inches tall and nearly 3.5 feet long, its height and width are irrelevant -- it could theoretically stretch on forever in either direction.

The researchers control how the device manipulates sound through the width of the channels between each row of columns and the size of the cavity inside each individual column. Some columns are wide open while others are nearly closed off.

To understand why, think of someone blowing air across the top of a glass bottle -- the pitch the bottle makes depends on the amount of liquid left inside the bottle. Similarly, each column resonates at a different frequency depending on how much of it is filled in with plastic.

As a sound wave travels through the device, each cavity resonates at its prescribed frequency. This vibration not only affects the speed of the sound wave but interacts with its neighboring cavities to tame both transmission and reflection.

"Previous devices could shape and redirect sound waves by changing the speed of different sections of the wave front, but there was always unwanted scattering," said Junfei Li, a doctoral student in Cummer's laboratory and first author of the paper. "You have to control both the phase and amplitude of both the transmission and reflection of the wave to approach perfect efficiencies."

To make matters more complicated, the vibrating columns not only interact with the sound wave, but also with their surrounding columns. Li needed to write an 'evolutionary computer optimization program,' to work through all the design permutations.

The researchers feed the program the boundary conditions needed on each side of the material to dictate how they want the outgoing and reflected waves to behave. After trying a random set of design solutions, the program mixes various combinations of the best solutions, introduces random "mutations," and then runs the numbers again. After many iterations, the program eventually "evolves" a set of design parameters that provide the desired result.

In the paper, Cummer, Li and colleagues demonstrate that one such set of solutions can redirect a sound wave coming straight at the metamaterial to a sharp 60-degree outgoing angle with an efficiency of 96 percent. Previous devices would have been lucky to achieve 60 percent efficiencies under such conditions. While this particular setup was designed to control a sound wave at 3,000 Hertz -- a very high pitch not dissimilar to getting a "ringing in your ears" -- the metamaterials could be scaled to affect almost any wavelength of sound.

The researchers and their collaborators are next planning to transfer these ideas to the manipulation of sound waves in water for applications such as sonar, although there aren't any ideas for applications in air. At least not yet.

"When talking about waves, I often fall back on the analogue of an optical lens," said Cummer. "If you tried to make really thin eyeglasses using the same approaches that these sorts of devices have been using for sound, they would stink. This demonstration now allows us to manipulate sound waves extremely accurately, like a lens for sound that would be way better than previously possible."

###

This work was supported by the Office of Naval Research (N00014-13-1-0631) and the National Science Foundation (1641084).

Learn More about Metamaterials at Duke.

CITATION: "Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts." Junfei Li, Chen Shen, Ana Diaz-Rubio, Sergei A. Tretyakov and Steven A. Cummer. Nature Communications, 2018. DOI: 10.1038/s41467-018-03778-9

Media Contact

Ken Kingery
ken.kingery@duke.edu
919-660-8414

 @DukeU

http://www.duke.edu 

Ken Kingery | EurekAlert!
Further information:
http://pratt.duke.edu/about/news/sound-control
http://dx.doi.org/10.1038/s41467-018-03778-9

More articles from Power and Electrical Engineering:

nachricht Scientists print sensors on gummi candy: creating microelectrode arrays on soft materials
21.06.2018 | Technische Universität München

nachricht Electron sandwich doubles thermoelectric performance
20.06.2018 | Hokkaido University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>