Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers take terahertz data links around the bend

07.02.2018

An off-the-wall new study by Brown University researchers shows that terahertz frequency data links can bounce around a room without dropping too much data. The results are good news for the feasibility of future terahertz wireless data networks, which have the potential to carry many times more data than current networks.

Today's cellular networks and Wi-Fi systems rely on microwave radiation to carry data, but the demand for more and more bandwidth is quickly becoming more than microwaves can handle.


New research shows that non-line-of-site terahertz data links are possible because the waves can bounce off of walls without losing too much data.

Credit: Mittleman lab / Brown University

That has researchers thinking about transmitting data on higher-frequency terahertz waves, which have as much as 100 times the data-carrying capacity of microwaves. But terahertz communication technology is in its infancy. There's much basic research to be done and plenty of challenges to overcome.

For example, it's been assumed that terahertz links would require a direct line of sight between transmitter and receiver. Unlike microwaves, terahertz waves are entirely blocked by most solid objects. And the assumption has been that it's not possible to bounce a terahertz beam around--say, off a wall or two--to find a clear path around an object.

"I think it's fair to say that most people in the terahertz field would tell you that there would be too much power loss on those bounces, and so non-line-of-sight links are not going to be feasible in terahertz," said Daniel Mittleman, a professor in Brown University's School of Engineering and senior author of the new research published in APL Photonics. "But our work indicates that the loss is actually quite tolerable in some cases -- quite a bit less than many people would have thought."

For the study, Mittleman and his colleagues bounced terahertz waves at four different frequencies off of a variety of objects--mirrors, metal doors, cinderblock walls and others -- and measured the bit-error-rate of the data on the wave after the bounces. They showed that acceptable bit-error-rates were achievable with modest increases in signal power.

"The concern had been that in order to make those bounces and not lose your data, you'd need more power than was feasible to generate," Mittleman said. "We show that you don't need as much power as you might think because the loss on the bounce is not as much as you'd think."

In one experiment, the researchers bounced a beam off two walls, enabling a successful link when transmitter and receiver were around a corner from each other, with no direct line-of-sight whatsoever. That's a promising finding to support the idea of terahertz local-area networks.

"You can imagine a wireless network," Mittleman explained, "where someone's computer is connected to a terahertz router and there's direct line-of-sight between the two, but then someone walks in between and blocks the beam. If you can't find an alternative path, that link will be shut down. What we show is that you might still be able to maintain the link by searching for a new path that could involve bouncing off a wall somewhere. There are technologies today that can do that kind of path-finding for lower frequencies and there's no reason they can't be developed for terahertz."

The researchers also performed several outdoor experiments on terahertz wireless links. An experimental license issued by the FCC makes Brown the only place in the country where outdoor research can be done legally at these frequencies. The work is important because scientists are just beginning to understand the details of how terahertz data links behave in the elements, Mittleman says.

Their study focused on what's known as specular reflection. When a signal is transmitted over long distances, the waves fan out forming an ever-widening cone. As a result of that fanning out, a portion the waves will bounce off of the ground before reaching the receiver. That reflected radiation can interfere with the main signal unless a decoder compensates for it. It's a well-understood phenomenon in microwave transmission. Mittleman and his colleagues wanted to characterize it in the terahertz range.

They showed that this kind of interference indeed occurs in terahertz waves, but occurs to a lesser degree over grass compared to concrete. That's likely because grass has lots of water, which tends to absorb terahertz waves. So over grass, the reflected beam is absorbed to a greater degree than concrete, leaving less of it to interfere with the main beam. That means that terahertz links over grass can be longer than those over concrete because there's less interference to deal with, Mittleman says.

But there's also an upside to that kind of interference with the ground.

"The specular reflection represents another possible path for your signal," Mittleman said. "You can imagine that if your line-of-site path is blocked, you could think about bouncing it off the ground to get there."

Mittleman says that these kinds of basic studies on the nature of terahertz data transmission are critical for understanding how to design the network architecture for future terahertz data systems.

###

Mittleman's co-authors were Jianjun Ma, Rabi Shrestha and Lothar Moeller. The research was supported by the National Science Foundation and the W.M. Keck Foundation.

Media Contact

Kevin Stacey
kevin_stacey@brown.edu
401-863-3766

 @brownuniversity

http://news.brown.edu/ 

Kevin Stacey | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>