Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NDSU Develops Innovative Laser-Enabled Electronic Packaging Technology

25.10.2011
Small. Fast. Precise. A new electronics manufacturing technology developed at North Dakota State University, Fargo, eliminates challenges facing conventional packaging techniques and shows promise to significantly reduce the size and unit cost of microelectronic devices.

The technology, called Laser-Enabled Advanced Packaging (LEAP™), has the potential to enable high-volume handling, placement and interconnection of microelectronic components smaller than ever before possible.

LEAP™ is a comprehensive wafer-to-product electronic packaging technology for high-throughput, low-cost, contactless assembly of ultrathin semiconductor chips onto rigid and flexible substrates. The technology has been under development by the Advanced Electronics Packaging research group at the North Dakota State University Center for Nanoscale Science and Engineering (CNSE), Fargo, N. D., since 2008.

Recently the NDSU researchers successfully implemented the LEAP™ technology to fabricate the first-ever functional electronic device with a laser-assembled, ultra-thin silicon chip embedded in a flexible substrate. The research group is led by Dr. Val Marinov, associate professor of manufacturing engineering; and includes Dr. Orven Swenson, associate professor of physics at NDSU; Ross Miller, research engineer apprentice; and CNSE research staff, graduate students and undergraduate research assistants.

A key part of LEAP™ is the patent-pending process, Thermo-Mechanical Selective Laser Assisted Die Transfer (tmSLADT™). This process selectively and rapidly places ultra-thin (

“The LEAP™ technology and tmSLADT™ process are important because they potentially enable a new class of inexpensive electronic devices by the high-volume placement and interconnection of various types of ultra-thin, fine pitch, active and passive circuit components,” said Aaron Reinholz, associate director for electronics technology at NDSU CNSE. “These types of components are especially of interest for flex substrate electronics, as they allow devices to bend, roll and be manipulated into complex geometries.”

Reinholz said application of the LEAP™ technology offers a new paradigm for numerous types of flexible and potentially disposable microelectronic devices, such as garment-integrated RFID tags, intelligent sensors platforms, and self-adapting conformal antennas. He added that this technology has strong potential in the near future outside of defense applications to reduce the unit cost of high volume single-chip devices such as RFID tags, smart cards, chip-and-pin bank cards and “smart” bank notes. According to CNSE researchers, the tmSLADT™ process also has potential value in microelectromechanical systems (MEMS) fabrication or other micro-assembly applications.

The LEAP™ technology is outlined in “Laser-Enabled Advanced Packaging of Ultrathin Bare Dice in Flexible Substrates” which has been accepted for publication by IEEE Transactions on Components, Packaging and Manufacturing Technology, manuscript TCPMT-2011-105. Another manuscript, “Noncontact Selective Laser-Assisted Placement of Thinned Semiconductor Dice,” is currently under peer review.

This material is based on research sponsored by the Defense Microelectronics Activity (DMEA) under agreement number H94003-11-2-1102. This press release does not necessarily reflect the position or the policy of the Government and no official endorsement should be inferred.

For more information, contact aaron.reinholz@ndsu.edu

About NDSU CNSE
NDSU’s Center for Nanoscale Science and Engineering, Fargo, conducts multidisciplinary research with partners in government, industry, private and university sectors. CNSE’s scientific capabilities include flexible electronics and materials, electronics miniaturization, wireless sensors, RFID, bioactive materials, combinatorial science, and coatings technologies. www.ndsu.edu/cnse
About NDSU
North Dakota State University, Fargo, is notably listed among the nation’s top 108 public and private universities in the Carnegie Commission on Higher Education’s elite category of “Research Universities/Very High Research Activity.” As a student-focused, land grant, research institution with more than 14,000 students, NDSU is listed in the top 40 research universities in the U.S. without a medical school, based on research expenditures reported to the National Science Foundation. At the 55-acre NDSU Research & Technology Park, faculty, staff and students work with private sector researchers on leading-edge projects. www.ndsu.edu/research

Aaron Reinholz | Newswise Science News
Further information:
http://www.ndsu.edu/research

More articles from Power and Electrical Engineering:

nachricht Researchers measure near-perfect performance in low-cost semiconductors
18.03.2019 | Stanford University

nachricht Robot arms with the flexibility of an elephant’s trunk
18.03.2019 | Universität des Saarlandes

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>