Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming Temperatures Will Change Greenland’s Face

14.11.2012
CCNY scientist constructs fine-scale projections of how warming will alter the island
Global climate models abound. What is harder to pin down, however, is how a warmer global temperature might affect any specific region on Earth.

Dr. Marco Tedesco, associate professor of earth and atmospheric sciences at The City College of New York, and a colleague have made the global local. Using a regional climate model and the output of three global climate models, they can predict how different greenhouse gas scenarios would change the face of Greenland over the next century and how this would impact sea level rise.

The resulting fine-scale model gives a high-resolution picture of the island’s future. “We put Greenland under a microscope to see what accounts for melting and for ice mass changes in different regions,” said Professor Tedesco.

He and his colleague, Xavier Fettweis of the University of Liege, Belgium, reported their results online November 8 in “Environmental Research Letters.”

They compared two possible future CO2 scenarios: a concentration of carbon dioxide in the atmosphere projected for the end of the century of 850 parts per million (ppm) versus a more aggressive projection of 1370 ppm. The first approximates the current rate of increase.

The Greenland ice sheet would lose more ice and snow to melting than it would accumulate in both scenarios. Basins on the southwest and north coasts would suffer the greatest losses. Temperatures would only have to increase by 0.6 to 2.16 degrees Celsius (1.8-3.9 ° F) to tip the balance into more loss than gain.

The new model shows how a melting would alter the topography of “one of the world’s refrigerators,” potentially affecting adjacent ocean circulation and salinity, and speeding further melting.

Though dramatic, Professor Tedesco said the predictions he reported might be too conservative. “They don’t take into account progressive effects of the changing elevations and topography and the acceleration of ice sheet movement.” These results, however, represent a step forward toward understanding the potential repercussions of warming temperatures; an improvement on models that give a much coarser view into the future, he added.

“Some areas will be 400 meters below the current elevation just because of melting. This might very well impact the speed and amount of ice that is flowing to the ocean. It would increase the rate of melting, because conditions get warmer at lower elevations” he noted. “Imagine an ice cream that is melting much faster in one area. This will change the shape of the ice mass over Greenland.”

Professor Marco Tedesco balances at the edge of a supraglacial lake. (Copyright M. Tedesco/WWF)

This work was supported by the National Science Foundation.

Professor Tedesco will be attending the European Space Agency’s conference on Earth Observation and Cryosphere Science, November 13-16 in Frascati (Rome), Italy. http://congrexprojects.com/12c20

On the Web:
Cryocity Cryospheric Processes Laboratory @CityCollege
http://www.cryocity.org/research.html
Reference:
M. Tedesco and X. Fettweis, 21st century projections of surface mass balance changes for major drainage systems of the Greenland ice sheet, Environ. Res. Lett. 7 045405 Issue 4 (December 2012) Published online 8 November 2012.

Media Contact
Jessa Netting P | 212-650-7615 E | jnetting@ccny.cuny.edu

Jessa Netting | EurekAlert!
Further information:
http://www2.ccny.cuny.edu/

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>