Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking sediments’ fate in largest-ever dam removal

08.03.2013
Salmon are beginning to swim up the Elwha River for the first time in more than a century. But University of Washington marine geologists are watching what’s beginning to flow downstream — sediments from the largest dam-removal project ever undertaken.
The 108-foot Elwha Dam was built in 1910, and after decades of debate it was finally dismantled last year. Roughly a third of the 210-foot Glines Canyon Dam still stands, holding back a mountain of silt, sand and gravel.

Removal of the upper dam was halted in January while crews repair a water-treatment plant near Port Angeles that got clogged with leaves and other debris. For engineers, this phase may be the trickiest part of the dam-removal project. For oceanographers, “the best is yet to come,” said Charles Nittrouer, a UW professor of oceanography and of Earth and space sciences.

It turns out there is even more sediment than originally thought – about 34 million cubic yards. That’s more than 3 million truck loads, enough to bury all of Seattle in a layer almost 3 inches thick.

Aerial photos show sediment starting to fan out around the river’s mouth.

“One of the risks of just looking at these beautiful plume pictures is that you really don’t know the extent of where that sediment actually ends up,” said Andrea Ogston, a UW associate professor of oceanography. “Our focus is looking at what’s happening very close to the seabed – how it’s going to move, where it’s going to get to, what’s its ultimate fate.”

For the past five years, Ogston and Nittrouer and their students have been studying the sediment around the river mouth, initially with the support of Washington Sea Grant, to understand the condition before the dams’ removal. Their current project, funded by the National Science Foundation, is looking for events that could act like a hundred-year storm and bury the sediment deep in the ocean.

The UW researchers have instruments to track particles in the water and record them accumulating on the ocean floor. They are on high alert for a rapid response when the river floods and dislodges the sediment. When that happens, they want to be onsite to record as much data as possible – and perhaps be the first to witness a rare geologic event.

In nature, deep-sea sediment flows triggered by earthquakes or extreme storms can be important for creating oil reserves and other geologic deposits, as a component of the global carbon cycle, and for burying communication cables.

Computer models and the geologic record suggest that when the sediment is in high-enough concentrations, it goes directly to the ocean floor. Instead of the fresh river water floating on top of the seawater, the river water becomes denser than the sea, and the sediment-laden river water plunges below the ocean water.

For the Elwha, that path would take much of the sediment away from the coastline and deep into the Strait of Juan de Fuca.

Learn more on the National Park Service’s Elwha River Restoration website

“A surface plume is very much at the whim of the winds and tides, whereas these underflows are just going down the steepest gradient,” Ogston said. “These are two very different mechanisms that would create very different impacts to the seabed.”

The dams initially powered a pulp mill and were built unusually close to the ocean – the upper dam is just 13 miles from the river mouth. Their removal provides a unique opportunity to study large river discharges.

“There is an understanding of the general type of flow, and people have predicted that it occurs in rivers, but no one has seen the smoking gun yet,” Nittrouer said. “This is a chance to document a 100-year storm. It’s really somewhat new territory.”

So far there have been dramatic changes to the seabed in the shallows, but few changes below about 20 feet, Ogston said.

Where the sediment ends up is of practical interest. Sediment can make the water murky, creating conditions that make it difficult for salmon to lay eggs, or block light from reaching algae and other life on the ocean floor. On the other hand, the sediment also has positive impacts. Many people hope that removing the dam will help with erosion along the Olympic Coast. The new sediment could accumulate and restore natural beaches on the bluffs near Port Angeles.

A spring undergraduate research apprenticeship, now in its third year, studies the geologic impacts of the Elwha dam removals.

A better understanding of sediment transport could also help determine the timing of future dam removals.

“One of the arguments is that rather than having a river that’s unacceptable to salmon for many years, you can accelerate the erosion to flush the system. That way you have two or three really bad years instead of two or three pretty bad decades,” Nittrouer said. Future projects might be trickier, he added, if the sediments contain pesticides or other chemicals.

Nobody knows when the Elwha’s sediment mother lode will begin to shift. A heavy rainfall combined with spring melt could dislodge the heap; if not, next fall and early winter rains will do the job. Either way, the UW marine geologists will be ready to hop in their van, hitch up a boat, and race out to see what happens.

“This is a very exciting time,” Ogston said.


For more information, contact Ogston at 206-543-0768 or ogston@ocean.washington.edu and Nittrouer at 206-543-5099 or nittroue@ocean.washington.edu. Nittrouer is on travel until the end of March and is best reached via e-mail.

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu
http://www.washington.edu/news/2013/03/07/tracking-sediments-fate-in-largest-ever-dam-removal/

More articles from Earth Sciences:

nachricht Ten-year anniversary of the Neumayer Station III
18.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht The pace at which the world’s permafrost soils are warming
16.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>