Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool clears the air on cloud simulations

27.10.2011
Climate models have a hard time representing clouds accurately because they lack the spatial resolution necessary to accurately simulate the billowy air masses.

But Livermore scientists and international collaborators have developed a new tool that will help scientists better represent the clouds observed in the sky in climate models.

Traditionally, observations from satellites infer the properties of clouds from the radiation field (reflection of sunlight back into space, or thermal emission of the planet). However, to accurately utilize satellite data in climate model assessment, a tool is required that allows an apples-to-apples comparison between the clouds simulated in a climate model and the cloud properties retrieved from satellites.

"The models are becoming more interactive and are taking into account the radiation data from the satellite observations and is an important part of the process of making better climate models," said the Lab's Stephen Klein, who along with LLNL's Yuying Zhang and other collaborators have developed the Cloud-Feedback-Model Intercomparison Project Observation Simulator Package (COSP).

"The models have been improving and refining their representations of clouds and COSP will play an important role in furthering this improvement," Klein said.

Climate models struggle to represent clouds accurately because the models lack the spatial resolution to fully represent clouds. Global climate models typically have a 100-kilometer resolution while meteorological models have a 20-kilometer range. However, to accurately represent clouds as seen in satellite measurements, the scale would need to be from the 500-meter resolution to 1-kilometer range.

"But those small scales are not practical for weather or global climate models," Klein said. "Our tool will better connect with what the satellites observe - how many clouds, their levels and their reflectivity."

The COSP is now used worldwide by most of the major models for climate and weather prediction, and it will play an important role in the evaluation of models that will be reviewed by the next report of the Intergovernmental Panel on Climate Change, Klein said.

The COSP allows for a meaningful comparison between model-simulated clouds and corresponding satellite observations. In other words, what would a satellite see if the atmosphere had the clouds of a climate model?

"COSP is an important and necessary development because modeled clouds cannot be directly compared with observational data; the model representation of clouds is not directly equivalent to what satellites are able to see," Klein explained. "The COSP eliminates significant ambiguities in the direct comparison of model simulations with satellite retrievals."

COSP includes a down-scaler that allows for large-scale climate models to estimate the clouds at the satellite-scale. The tool also allows modelers to diagnose how well models are able to simulate clouds as well as how climate change alters clouds. The tool already has revealed climate model limitations such as too many optically thick clouds, too few mid-level clouds and an overestimate of the frequency of precipitation. Additionally, COSP has shown that climate change leads to an increase in optical thickness and increases the altitude of high clouds and decreases the amount of low and mid-level clouds.

Other collaborators include: the UK's Hadley Centre, Université Pierre et Marie Curie; University of Washington; Monash University, University of Colorado; and the National Oceanic and Atmospheric Administration/Earth System Research Laboratory.

More information about the COSP appears in the August issue of the Bulletin of the American Meteorological Society.

More Information
"COSP: Satellite simulation software for model assessment," Bulletin of the American Meteorological Society

"Increase in atmospheric moisture tied to human activities," LLNL news release, Sept. 18, 2007

"Identification of Human-Induced Changes in Atmospheric Moisture Content," Proceedings of the National Academy of Sciences, Sept. 25, 2007

LLNL's Program for Climate Model Diagnosis and Intercomparison

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Earth Sciences:

nachricht Strong storms generating earthquake-like seismic activity
16.10.2019 | Florida State University

nachricht The shelf life of pyrite
14.10.2019 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Analysis of Galileo's Jupiter entry probe reveals gaps in heat shield modeling

17.10.2019 | Physics and Astronomy

Creating miracles with polymeric fibers

17.10.2019 | Physics and Astronomy

Synthetic cells make long-distance calls

17.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>