Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SwRI-led team’s research shows giant asteroids battered early Earth

01.08.2014

A new terrestrial bombardment model developed by an international group of scientists led by Southwest Research Institute (SwRI) indicates that Earth’s surface was heavily reprocessed — or melted, mixed and buried — as a result of giant asteroid impacts more than four billion years ago.

The model, calibrated using existing lunar and terrestrial data, sheds light on the role asteroid collisions played in the geological evolution of the uppermost layers of Earth during the geologic eon call the “Hadean,” or first geologic eon, approximately four to 4.5 billion years ago.


Image Courtesy of Simone Marchi

An artistic conception of the early Earth, showing a surface pummeled by large impacts, resulting in extrusion of deep-seated magma onto the surface. At the same time, the distal portion of the surface could have retained liquid water.

The team, which also included academic and government researchers, published its findings in a paper, “Widespread Mixing and Burial of Earth’s Hadean Crust by Asteroid Impacts,” in the July 31, 2014, issue of the journal Nature.

An artistic conception of the early Earth, showing a surface pummeled by large impacts, resulting in extrusion of deep-seated magma onto the surface. At the same time, the distal portion of the surface could have retained liquid water.

“Prior to approximately four billion years ago, no large region of Earth’s surface could have survived untouched by impacts and their effects,” said Dr. Simone Marchi, lead author of the paper and a planetary scientist in SwRI’s Planetary Science Directorate in Boulder, Colo. “The new picture of the Hadean Earth emerging from this work has important implications for its habitability,” Marchi said.

Large impacts had particularly severe effects on existing ecosystems. Researchers found that on average, Hadean Earth more than four billion years ago could have been hit by one to four impactors that were more than 600 miles wide and capable of global sterilization, and by three to seven impactors more than 300 miles wide and capable of global ocean vaporization.

“During that time, the lag between major collisions was long enough to allow intervals of more clement conditions, at least on a local scale,” Marchi said. “Any life emerging during the Hadean eon likely needed to be resistant to high temperatures and could have survived such a violent period in Earth’s history by thriving in niches deep underground or in the ocean’s crust.”

The research was supported in part by NASA’s Solar System Exploration Research Virtual Institute (SSERVI) at NASA’s Ames Research Center in Moffett Field, Calif.

“A large asteroid impact could have buried a substantial amount of Earth’s crust with impact-generated melt,” said Dr. Yvonne Pendleton, SSERVI director at Ames. “This new model helps explain how repeated asteroid impacts may have buried Earth’s earliest and oldest rocks.”

Terrestrial planet formation models indicate Earth went through a sequence of major growth phases: initially accretion of planetesimals — planetary embryos — over many tens of millions of years; then a giant impact that led to the formation of the Moon; followed by the late bombardment when giant asteroids several tens to hundreds of miles in size periodically hit ancient Earth, dwarfing the one that presumably killed the dinosaurs (estimated to be six miles in size), only 65 million years ago.

Researchers estimate that accretion during the late bombardment contributed less than one percent of Earth’s present-day mass, but the giant asteroid impacts still had a profound effect on the geological evolution of early Earth. Prior to four billion years ago Earth was resurfaced over and over by voluminous, impact-generated melt.

Furthermore, large collisions as late as about four billion years ago may have repeatedly boiled away existing oceans into steamy atmospheres. Despite the heavy bombardment, the findings are compatible with the claim of liquid water on Earth’s surface as early as about 4.3-4.4 billion years ago based on geochemical data.

The new research reveals that asteroidal collisions not only severely altered the geology of the Hadean eon Earth, but also likely played a major role in the evolution of life on early Earth as well.

The team was comprised of Marchi and Dr. William Bottke from SwRI; L. Elkins-Tanton from Carnegie Institution for Science in Washington; M. Bierhaus and K. Wünnemann from the Museum fur Naturkunde in Berlin, Germany; A. Morbidelli from Observatoire de la Côte d’Azur in Nice, France; and D. Kring from the Universities Space Research Association and the Lunar and Planetary Institute in Houston.

SSERVI is a virtual institute that, with international partnerships, brings science and exploration researchers together in a collaborative virtual setting. SSERVI is funded by the Science Mission Directorate and Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington. For more information about SSERVI and selected member teams, visit: http://sservi.nasa.gov.

Editors: An artistic conception of the early Earth is available at: http://www.swri.org/press/2014/hadean-earth.htm.

For more information, contact Joe Fohn, (210) 522-4630, Communications Department, Southwest Research Institute, PO Drawer 28510, San Antonio, TX 78228-0510.

Joe Fohn | Eurek Alert!
Further information:
http://www.swri.org/9what/releases/2014/hadean-earth.htm#.U9tbBWEcTcs

Further reports about: Earth Exploration Planetary SwRI-led asteroids collisions

More articles from Earth Sciences:

nachricht Abrupt cloud clearing events over southeast Atlantic Ocean are new piece in climate puzzle
23.07.2018 | University of Kansas

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>