Soil microorganisms in the Amazon rainforest can affect atmospheric chemistry
The Amazon rainforest is the largest forest on earth. Its trees emit huge amounts of volatile substances that influence the chemical composition of the air. Some of these substances are the so-called sesquiterpenes, very reactive chemicals that can rapidly consume ozone. Until recently scientists studying the air composition in forests were primarily focused on trees and plants.
An international research team has now revealed, that the soil emissions of sesquiterpenes can be, under certain conditions, just as strong as those from the canopy. The molecules are produced by microorganisms in the soil.
This discovery shows that the emissions from soil to air are an important component of the Amazonian ecosystem that had been previously overlooked. The study results have recently been published in the journal Nature Communications.
“In previous studies, we found an ozone gradient in the Amazon forest with low levels near the soil. We thus suspected that we were missing an important source of reactive molecules removing the ozone,” said Jonathan Williams, group leader at the Max Planck Institute for Chemistry.
Sesquiterpenes react rapidly with ozone and can therefore impact the self-cleaning capacity of the atmosphere – a chemical process, whereby pollutants are removed from the air. The soil emissions are responsible for the depletion of about 50 percent of the ozone close to the forest floor which slows down the cleaning processes and can help pollinating insects find flowers via their scent.
The scientists first collected soil samples from several different sites in the Amazon jungle, most of them from the Amazon Tall Tower Observatory (ATTO), representing pristine Amazonian forest. Under controlled laboratory conditions, they then added water to simulate rain, and watched for volatile emissions as the soil dried out. As the drying progressed, conditions in the soil changed to suit different communities of soil microbes, each of which emitted different characteristic chemicals including sesquiterpenes.
"We found very similar patterns of sesquiterpene emissions and microbial activity in the soil," says Thomas Behrendt, soil scientist at the Max Planck Institute for Biogeochemistry in Jena. Based on the experimental results, Efstratios Bourtsoukidis, an atmospheric chemist at the Max Planck Institute for Chemistry, developed a precise numerical model to predict the fluxes of sesquiterpenes between the soil and the atmosphere. When simulating the daily fluxes from a very common tropical soil and the canopy over a period of two years, Bourtsoukidis observed that sesquiterpene emissions from the soils in the dry season were at certain times as strong as canopy emissions.
The study results show how important the connection between soil microbes and atmospheric chemistry is.
Dr. Jonathan Williams
Max Planck Institute for Chemistry, Mainz, Germany
Telephone: +49-6131-305 4500
Email: jonathan.williams@mpic.de
Dr. Thomas Behrendt
Max- Planck Institute for Biogeochemistry, Jena, Germany
Telephone: +49-3641 57-60 6105
Email: tbehr@bgc-jena.mpg.de
Strong sesquiterpene emissions from Amazonian soils
E. Bourtsoukidis, T. Behrendt, A.M. Yañez-Serrano, H. Hellén, E. Diamantopoulos, E. Catão, K. Ashworth, A. Pozzer, C.A. Quesada, D.L. Martins, M. Sá, A. Araujo, J. Brito, P. Artaxo, J. Kesselmeier, J. Lelieveld & J. Williams
Nature Communications, 8 June 2018
DOI: 10.1038/s41467-018-04658-y
https://www.nature.com/articles/s41467-018-04658-y
Dr. Susanne Benner | Max-Planck-Institut für Chemie
Further information:
http://www.mpic.de/
Further reports about: > Amazon > Max-Planck-Institut > atmosphere > canopy > chemical composition > microbes > soil microbes
Great Barrier Reef study shows how reef copes with rapid sea-level rise
04.12.2019 | University of Sydney
Underwater telecom cables make superb seismic network
02.12.2019 | University of California - Berkeley
With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction
The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...
Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.
Fibroblasts kit - ready to heal wounds
Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.
In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...
Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.
Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...
Anzeige
Anzeige
03.12.2019 | Event News
First International Conference on Agrophotovoltaics in August 2020
15.11.2019 | Event News
Laser Symposium on Electromobility in Aachen: trends for the mobility revolution
15.11.2019 | Event News
Dramatic transition in Streptomyces life cycle explained in new discovery
04.12.2019 | Life Sciences
Early immune response may improve cancer immunotherapies
04.12.2019 | Health and Medicine
Neurodegenerative diseases may be caused by transportation failures inside neurons
04.12.2019 | Life Sciences