Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surface lakes cause Antarctic ice shelves to 'flex'

13.02.2019

The filling and draining of meltwater lakes has been found to cause a floating Antarctic ice shelf to flex, potentially threatening its stability.

A team of British and American researchers, co-led by the University of Cambridge, has measured how much the McMurdo ice shelf in Antarctica flexes in response to the filling and draining of meltwater lakes on its surface.


Meltwater lakes in Antarctica.

Credit: Alison Banwell

This type of flexing had been hypothesised before and simulated by computer models, but this is the first time the phenomenon has been measured in the field. The results are reported in the journal Nature Communications.

The results demonstrate a link between surface melting and the weakening of Antarctic ice shelves and support the idea that recent ice shelf breakup around the Antarctic Peninsula may have been triggered, at least in part, by large amounts of surface meltwater produced in response to atmospheric warming.

As the climate continues to warm, more and more ice shelves may become susceptible to flex, fracture and break up over the coming century.

Most of the Antarctic continent is covered by the Antarctic Ice Sheet, which is up to four kilometres thick and contains enough ice to raise global sea levels by about 58 metres. Over most of the continent and for most of the year, air temperatures are well below zero and the ice surface remains frozen.

But around 75% of the ice sheet is fringed by floating ice shelves, which are up to a kilometre thick, mostly below sea level, but with tens of metres of their total height protruding above the water. In the summer months, when air temperatures rise above freezing, the surfaces of these ice shelves are susceptible to melting.

"Surface water on ice shelves has been known about for a long time," said co-author Dr Ian Willis from Cambridge's Scott Polar Research Institute.

"Over 100 years ago, members of both Shackleton's Nimrod team and the Northern Party team of Scott's British Antarctic Expedition mapped and recorded water on the Nansen Ice Shelf, around 300 kilometres from where we did our study on the McMurdo Ice Shelf. For the last few decades, it has also been possible to see widespread surface meltwater forming on many ice shelves each summer from satellite imagery."

What is not fully known is the extent to which surface water might destabilise an ice shelf, especially in warmer summers when more meltwater is produced. If the slope of the ice shelf is sufficiently steep, the water may flow off the ice shelf to the ocean in large surface rivers, mitigating against any potential instability.

The danger comes if water pools up in surface depressions on the ice shelf to form large lakes. The extra weight of the water will push down on the floating ice, causing it to sink a bit further into the sea. Around the edge of the lake, the ice will flex upwards to compensate.

"If the lake then drains, the ice shelf will now flex back, rising up where the lake used to be, sinking down around the edge," said lead author Dr Alison Banwell, also from SPRI. "It is this filling and draining of lakes that causes the ice shelf to flex, and if the stresses are large enough, fractures might also develop."

Banwell and co-author Professor Doug MacAyeal from the University of Chicago had previously suggested that the filling and draining of hundreds of lakes might have led to the catastrophic breakup of the Larsen B Ice Shelf 2002 when 3,250 square kilometres of ice was lost in just a few days.

"We had been able to model the rapid disintegration of that ice shelf via our meltwater loading-induced fracture mechanism," said Banwell. "However, the problem was that no one had actually measured ice shelf flex and fracture in the field, and so we were unable to fully constrain the parameters in our model. That's partly why we set out to try to measure the process on the McMurdo ice shelf."

Using helicopters, snow machines and their own two feet, the researchers set up a series of pressure sensors to monitor the rise and fall of water levels in depressions which filled to become lakes, and GPS receivers to measure small vertical movements of the ice shelf.

"It was a lot of work to obtain the data, but they reveal a fascinating story," said MacAyeal. "Most of the GPS signal is due to the ocean tides, which move the floating ice shelf up and down by several metres twice a day. But when we removed this tidal signal we found some GPS receivers moved down, then up by around one metre over a few weeks whereas others, just a few hundred metres away, hardly moved at all.

The ones that moved down then up the most were situated where lakes were filling and draining, and there was relatively little movement away from the lakes. It is this differential vertical motion that shows the ice shelf is flexing. We'd anticipated this result, but it was very nice when we found it."

The team hope that their work will inspire others to look for evidence of flex and fracture on other ice shelves around Antarctica. Their work will also help in developing ice sheet scale models that could be used to predict the stability of ice shelves in the future and to understand the controls on ice shelf size since they act as buffers against fast-moving ice from the continent. As ice shelves shrink, glaciers and ice streams behind them flow more rapidly to the ocean, contributing to global sea level rise.

###

The work was funded by the US National Science Foundation, the Leverhulme Trust, NASA, and CIRES, University of Colorado, Boulder.

Media Contact

Sarah Collins
sarah.collins@admin.cam.ac.uk
44-012-237-65542

 @Cambridge_Uni

http://www.cam.ac.uk 

Sarah Collins | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41467-019-08522-5

More articles from Earth Sciences:

nachricht The shelf life of pyrite
14.10.2019 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Laser precision: NASA flights, satellite align over sea ice
04.10.2019 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

How to control friction in topological insulators

14.10.2019 | Physics and Astronomy

The shelf life of pyrite

14.10.2019 | Earth Sciences

Shipment tracking for "fat parcels" in the body

14.10.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>