Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space technology investigates large-scale changes to Africa's climate

06.03.2015

University of Leicester researchers map climate and human impacts on Africa's land resources using satellite mapping technology

An international research team led by the University of Leicester has mapped the entire African continent south of the Sahara for geographical changes - and has discovered that many areas receive drastically different amounts of rainfall today compared to just ten years ago.


This figure (2) shows a trend in vegetation greenness over 10 years. Green = greener conditions, red = less green conditions.

Credit

Image credit: Hoscilo, A., Balzter H., Bartholomé, E., Boschetti, M., Brivio, P.A., Brink, A., Clerici, M. and Pekel, J.-F. (2015): A conceptual model for assessing rainfall and vegetation trends in Sub-Saharan Africa from satellite data. International Journal of Climatology. doi: 10.1002/joc.4231.

The study, which investigated the rainfall and greenness of plants in African regions using satellite mapping technology, suggests that areas such as the Congo, Nigeria and Madagascar now receive far less rainfall than they did a decade ago, while other locations such as the Sahel zone have become far greener through increased rainfall.

Together with the Joint Research Centre of the European Commission, the Institute of Electromagnetic Sensing of Environment of the National Research Council of Italy, and the Polish Institute of Geodesy and Cartography, the study analysed 10 years of satellite data.

Professor Heiko Balzter, Director of the Centre for Landscape and Climate Research at the University of Leicester and co-author of the study, said: "We looked at the satellite data and discovered a number of surprising hotspots of change. Some parts of the Congo, Nigeria and Madagascar appear to receive much less rainfall now compared to 10 years ago. This is an issue even in the wet tropics of the Congo, where low rainfall means restrictions to ship movements on the rivers there, which are the main transport routes in the dense jungle.

"Large parts of the Sahel zone, which suffered from intense famine in the past, has greened up over the past decade, probably because of wetter weather. We know that rainfall in this region depends highly on the African monsoon. The weather systems can change a lot on the time-scales of tens of years. This means that our maps cannot be regarded as maps of long-term climate change impacts. They merely reflect climatic impacts over the past ten years. We know that this period is too short to relate it to the global warming debate.

"Future satellite observations will allow us to extend the time-series and observe large-scale changes in Africa."

Regions where more rainfall led to greener plants were mapped in West Africa, Central African Republic, West Cameroon and north-eastern part of South Africa. Areas of climatic vegetation degradation were located in Southern Madagascar, Nigeria, Kenya and the Garden Route region of South Africa.

Meteorological stations in Africa are far and between. Satellites can fill in the gaps in weather observations. The researchers used a rain dataset that is produced by the National Oceanic and Atmospheric Administration's (NOAA) Climate Prediction Centre and combined the best qualities of local rain gauge stations with the satellite data. The system is used by the US for a famine early warning system.

The findings highlight areas where climatic changes are the likely cause of greener or browner vegetation. More rain can lead to a 'greening up' of large regions, as was the case in the West African Sahel zone. If rains become scarcer, in dry areas the plants cannot 'green up' as much. This effect is large enough to be observed from satellite.

The new concept developed by the research team interprets satellite observations of rainfall and vegetation greenness at the same time. If the plants lost some of their greenness over time, then the researchers checked for climatic changes, meaning reduced rainfall. If reduced rains coincide with browner plants, the chances are that the climatic change causes the changes in the plants.

If there was more rain and the plants greened up over the ten years of data, the researchers think that there was a positive impact of climatic change on the plants. However, in areas where the weather got wetter but plants were browning, non-climatic factors are likely behind the change. Such factors can be human land use change, agricultural expansion, overgrazing or ecological disturbances.

With over 30 million km2 in size, Africa is a vast continent with over 200 times the area of England. Many countries are plagued by armed conflicts, water scarcity, diseases such as Ebola and HIV, slow economic development and high dependence on natural resources. Africa's vegetation plays a vital role in securing livelihoods and providing a basis of living for local communities.

Dr Agata Hoscilo, the postdoctoral researcher responsible for producing the satellite maps, added: "The results have shown that spatial patterns of different change processes can be detected in specific regions of Africa, which are generally consistent with independently reported literature on longer-term trends, El Ni?o effects and decadal-scale climate oscillations.

"This study confirms that most of the vegetation in sub-Saharan Africa depends on rainfall variability, particularly in the semi-arid and arid environments; however, there are areas where degradation of vegetation condition is driven by other anthropogenic or natural factors. The concept proved to be less reliable in the wet tropics. Use of coarse resolution satellite data can be a valuable source of information leading to better understanding of the drivers of change."

###

The study 'A conceptual model for assessing rainfall and vegetation trends in sub-Saharan Africa from satellite data' is published in the top-rated International Journal of Climatology, and is already available online. It is open access, free of charge. The journal has an Impact Factor of 3.4 and features in the top 20 journals in Meteorology & Atmospheric Sciences (ISI Journal Citation Reports © Ranking: 2013: 17/76).

The research was supported by the EU-FP7 funded Geoland-2 project.

Heiko Balzter | EurekAlert!

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>