Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Significant humus loss in forests of the Bavarian Alps

21.06.2016

Climate warming to blame for 14 percent humus decline in the Alps

Alpine forests will be at great risk should weather phenomena such as droughts and torrential rain become more frequent. As a study by the Technical University of Munich (TUM) shows, the mountain forests of the Bavarian Alps have seen a significant reduction in topsoil organic matter over the past three decades. The study authors’ recommendation is therefore to preserve, or better still, increase soil humus regardless of climate change by implementing humus-promoting forest management to safeguard the mountain forest’s protective function and to mitigate floods.


Will such soil in the Bavarian Alps soon just be a mere memory? Humus-rich soil in the Wetterstein Forest near Garmisch-Partenkirchen.

(Photo: J. Prietzel/ TUM)

Humus stocks are essential for soil fertility, water balance and nutrient supply of the soil. Previous studies established that especially in cooler mountain regions, carbon bound in soil organic matter reacts very sensitively to warmer weather caused by climate warming, and is increasingly released by microorganisms. As a consequence, the soil loses one of its essential features: its capacity to store carbon, which, after being released, also contributes to global warming.

So far, no exact data existed as to the changes in humus stocks of Alpine soil over the years, and any calculations to this effect are rather imprecise. Scientists at the Technical University of Munich have now published a new study in Nature Geoscience that identifies the changes to Alpine humus stocks based on data from 35 mountain forests and mountain pastures. Their study is based on two independent analyses, which permitted conclusions on the changes in soil conditions over the past thirty years.

Significant humus loss in mountain forest soil across short time span

One of the two studies looked at all major forest and soil types across the entire 1,700 square mile area of the Bavarian Alps between 1986 and 2011. The second study observed typical mountain spruce forests in the Berchtesgaden region (total area: 230 square miles) from 1976 onward.

“I was surprised to see that the humus stocks of forest soils have seen such a dramatic – and in statistical terms significant – degree of depletion”, says Professor Jörg Prietzel of the Chair of Soil Science at TUM. During the period under investigation, the topsoil organic matter stock of forest soils in the Bavarian Alps declined by an average of approximately 14 percent.

The heaviest depletion occurred in soils with limestone or dolomite parent material. They suffered a loss of just under one third of their humus mass. “Overall, the conclusions drawn from the two studies – despite employing different approaches and covering different regions – are almost identical,” explains lead author Prietzel. No silvicultural usage of the areas under investigation took place during the study. Humus depletion must hence be a result of climate change.

Climate warming in the Alps since the 1970s

The soil organic matter decline is highly likely to be a consequence of climate warming, which has been recorded by weather stations in the Bavarian Alps over the past hundred years – in particular in more recent decades.

“The Alps in the Berchtesgaden region have been affected quite dramatically,” explains Prof. Prietzel, “as mean air temperature there has seen a particularly drastic rise during summer months.” In connection with increased temperatures during the summer months, regions where air temperatures are on the up also experience a warming of the ground, which presumably is the primary cause for the progressive degradation of soil organic matter.

Digression from the findings: no humus loss found in mountain pasture soil

In contrast to forest soils, mountain pasture soils examined in the Berchtesgadener Alps suffered no humus loss in the past 30 years. However, they tend to be without exception less humus-rich than directly adjoining forested soils.

The authors of the study suspect that the mountain pastures, which many hundreds of years ago also used to be wooded areas before the advent of alpine farming, must have lost a considerable portion of their original humus stock relatively soon after the forests had been cleared to make room for the pastures. The remaining soil organic matter is not – as is frequently the case with forest soil – mostly present as “forest floor” in the surface layer, but lies deeper underground where it is better protected from humus-degrading microorganisms.

The study authors recommend: implement humus-promoting forest management

Ultimately, the study authors expect average summer temperatures in the Alps to keep rising, coupled with an increase in extreme weather episodes. Hence, we will see more and more extended periods of no rain at all alternating with heavy rain.   

A thick humus layer with great water storage capability is able to mitigate the effects of such extreme weather on mountain forests and the mountain landscape. It stores water for trees and the Alpine flora, while at the same time reducing floodwaters after heavy downpours. In order to preserve such vital functions of the humus layer, the climate-change-based humus degradation must be proactively countered by promoting humus restoration.

Of central importance in this scenario are “resilient” mountain forests that can withstand extreme incidents. Such forests are characterized by being made up of a diverse range of different tree species and trees of varying ages. Trees of such forests yield a continuous supply of stray litter such as leaves, needles, roots or brushwood, and maintain a constant cool “forest climate”, even during hot summers, which in turn slows down humus degradation by soil microorganisms. What’s more, they also prevent erosion-borne humus loss as a result of downpours, snow gliding or avalanches. 

Publication:

Jörg Prietzel, Lothar Zimmermann, Alfred Schubert and Dominik Christophel: Organic matter losses in German Alps forest soils since the 1970s most likely caused by warming, Nature Geoscience13. Juni 2016.
DOI: 10.1038/NGEO2732

Contact:

Prof. Dr. Jörg Prietzel
Technical University of Munich
Chair of Soil Science
Emil-Ramann-Str. 2
85354 Freising
Tel: +49 (8161) 71 - 4734
E-Mail: joerg.prietzel@mytum.de

Weitere Informationen:

http://go.tum.de/519290

Dr. Ulrich Marsch | Technische Universität München

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>