Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find Link Between the Input of Iron and Biological Productivity in the Ancient Pacific Ocean

16.03.2012
A team of researchers has just published a new paper, lead authored by Boston University Professor of Earth Sciences Richard W. Murray, that provides compelling evidence from marine sediment that supports the theory that iron in the Earth’s oceans has a direct impact on biological productivity, potentially affecting the amount of carbon dioxide in the atmosphere and, in turn, atmospheric temperature. These findings have been published in the March 11, 2012 online edition of the journal Nature Geoscience (DOI: 10.1038/NGEO1422). (See www.nature.com/naturegeoscience.)

The oceans are the world's largest inventory of reactive carbon. Over time, oceanic carbon exchanges with the atmospheric reservoir of carbon in the form of carbon dioxide (CO2). Much of the carbon present in the surface oceans is taken up by the growth of marine plants (primarily by phytoplankton) through photosynthesis. Consequently, marine biological productivity is recognized as a factor in determining the amount of atmospheric carbon dioxide at various times in the Earth’s history.

The magnitude of ocean biological productivity depends on the availability of key nutrients, including nitrogen, phosphorous and metals such as iron. In fact, previous research has established that biological productivity in the equatorial Pacific and the oceans around Antarctica is limited by the amount of iron, a micro-nutrient, more than by the better-known 'major' nutrients nitrogen and phosphorus.

The link between iron and marine biological productivity first gained attention more than twenty years ago with the publication of a controversial paper by the late John Martin, an oceanographer at the at the Moss Landing Marine Laboratories (California State University). Martin’s “Iron Hypothesis” postulates that biological productivity could be stimulated by increasing the amount of iron in the ocean, which in turn would draw down atmospheric carbon dioxide. He further argued that this process contributed to ancient ice ages: When the earth was drier and therefore dustier, more iron was deposited in the oceans, thus stimulating biological productivity, reducing atmospheric carbon dioxide and cooling the earth (the inverse of global warming). This could result in prolonged glacial periods. By closely examining the sedimentary record, Murray and his colleagues have established a clear relationship between plant plankton (diatoms) and the input of iron, exactly as Martin predicted.

Many researchers since Martin have established that the availability of iron in the modern ocean determines the amount of biological production in high-nutrient, low-chlorophyll regions and may be important in lower-nutrient settings as well. By examining the paleo-oceanographic record of iron input and the deposition of diatoms, Murray and his colleagues found that the ancient system is highly consistent with what occurs in the oceans today.

The new publication provides an important sedimentary record from the high-nutrient, low-chlorophyll region of the equatorial Pacific Ocean, and shows strong links between iron input and the export and burial of biogenic silica (opal produced from diatoms) over the past million years. Although the direct relationship to climate remains unclear, data collected by the team demonstrate that iron accumulation is more closely tied to the accumulation of opal than any other biogenic component, and that high iron input closely correlates with substantially increased opal sedimentation. The strong links between iron and opal accumulation in the past are in agreement with the modern biogeochemical behavior of iron and silica, and the response of the diatom community to their mutual availability, all of which supports Martin’s postulate of a biological response to iron delivery over long timescales.

The co-authors of this study are Margaret Leinen, Executive Director, Harbor Branch Oceanographic Institution and Associate Provost for Marine and Environmental Initiatives, Florida Atlantic University, and Christopher W. Knowlton, Graduate School of Oceanography, University of Rhode Island, Narragansett. Murray first began working on these research ideas while a post-doctoral researcher in Leinen’s laboratory at the University of Rhode Island in the 1990’s, and Knowlton is a former graduate student of Leinen’s who studied the opal distribution in these sediments.

About Boston University—Founded in 1839, Boston University is an internationally recognized private research university with more than 30,000 students participating in undergraduate, graduate, and professional programs. As Boston University’s largest academic division, the College and Graduate School of Arts & Sciences is the heart of the BU experience with a global reach that enhances the University’s reputation for teaching and research.

Richard W. Murray, Professor
Department of Earth Sciences
Boston University
685 Commonwealth Avenue
Boston, MA 02215
Office Phone (617) 353-6532
Email rickm@bu.edu

Richard W. Murray, Professor | Newswise Science News
Further information:
http://www.bu.edu

More articles from Earth Sciences:

nachricht Research icebreaker Polarstern begins the Antarctic season
09.11.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Far fewer lakes below the East Antarctic Ice Sheet than previously believed
08.11.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>