Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

10 Million year old chips reveal link between fish diet and evolution

28.09.2007
Chips from 10 million years ago have revealed new insights into fish diets and their influence on fish evolution, according to new research featured in this week’s issue of the journal Science. The chips were found, along with scratches, on the teeth of fossil stickleback fish and reveal for the first time how changes in the way an animal feeds control its evolution over thousands of years.

This kind of study, which was funded by the Natural Environment Research Council, has previously not been possible because although fossils preserve direct evidence of evolutionary change over thousands and millions of years, working out exactly what a long-dead fossil animal was eating when it was alive, and establishing a link between feeding and evolution, is very difficult.

The stickleback tooth chips and scratches were formed 10 million years ago as part of the normal process of tooth wear while the fish were alive and feeding in a large lake in what is now Nevada. “Like footprints in sand, the wear on teeth preserves a trail of evidence of how a fish feeds and what it feeds on,” says Dr Mark Purnell from the University of Leicester, lead author on the report. “The difficult bit was learning how to read that trail.”

The research team, based at the universities of Leicester, UK, and Stony Brook, USA, captured living stickleback (of the common or garden pond variety), fed them different kinds of food in different conditions and then examined their teeth using a powerful electron microscope. The team also looked at the teeth of wild stickleback, which had been feeding naturally, from Alaskan lakes.

Professor Paul Hart, also from the University of Leicester, explains: “The teeth might be tiny, but we discovered a very clear picture. Stickleback that feed from lake bottoms have very different tooth wear from those that eat water fleas and the like which swim around in open water”. The fossil teeth have almost exactly the same wear patterns as living stickleback but they have changed through time.

Dr. Mike Bell, from Stony Brook University adds, “Stickleback are spiky little characters, with armour and spines on their sides and along their backs. We found that evolutionary changes in these characteristic features were closely linked to shifts in feeding away from the lake bottom. As feeding changed over thousands of years, the stickleback in the fossil sequence evolved to have fewer spines.”

Scientifically, this is highly significant. That feeding and diet is an important control on evolution is exactly what would be expected from evolution by natural selection, but this is the first time that this aspect of Darwin’s theory has been directly testable using fossils that record real evolutionary change over many thousands of years. “We now know that by looking at microscopic chips and scratches on fish teeth we can investigate important evolutionary questions that were previously in the realm of the unknowable” concludes Purnell.

Marion O'Sullivan | alfa
Further information:
http://www.nerc.ac.uk

More articles from Earth Sciences:

nachricht Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide
15.08.2018 | University of Washington

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>