Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geoscience converges under pressure

23.05.2007
The contents of the deep Earth affect the planet as a whole, including life at its surface, but scientists must find unusual ways to "see" it. Only recently have researchers been able to produce the extreme temperatures and pressures found inside our planet to understand how it is forming and evolving.

A special online edition of the Proceedings of the National Academy of Sciences (PNAS), released May 21-25, explores the exotic world of high pressures as a window to understand a broad range of problems in Earth and planetary science.

The papers originated from a May 2006 workshop entitled "Synergy of 21st Century High-Pressure Science and Technology," sponsored by the Carnegie/DOE Alliance Center and organized by Carnegie’s Geophysical Laboratory scientists Ho-kwang (Dave) Mao and Russell J. Hemley*. As the 2005 Balzan Prizewinners, the duo also discussed the subject at the Balzan Distinguished Lecture on May 16, 2007, at the Institut de Physique du Globe, Paris.

"There is a rich history surrounding certain fundamental questions, such as how materials deep within the Earth rise as plumes, and what happens happened to plates as they push against each other and dive below others to great depths," explained Hemley. "But it’s just recently that we’ve been able both to produce the ultrahigh pressures found in the deep Earth and to harness tools that can measure the changes in matter in this extreme environment."

The articles in this issue of PNAS detail some of the profound alterations of earth and planetary materials under these extreme conditions, as well as new findings in seismology and geodynamics that require these new data for their interpretation. The articles provide insights into the inner workings of the planet, and explain new high-pressure techniques that are moving this research forward apace. "It’s a new era for both Earth and planetary sciences," Hemley added.

The special edition of the PNAS features 15 articles on high-pressure geoscience. The subjects include what causes deep earthquakes, as well as how tiny, micro- to nanometer-size minerals can reveal physical and chemical process of the deep Earth. Surprising findings about an elusive zone nearly 1,800 miles below the surface near the planet’s core, called the D'' layer, are also described. Additionally, observations in seismology are compared with mineral data from the laboratory and first-principles theory. There are also details of techniques that can potentially be used to study the even higher pressures and temperature of the interiors of giant planets, such as Jupiter.

Although the special edition focuses on the Earth and planetary sciences, the broad future of high-pressure was reflected in the workshop. The studies are creating new classes of materials, contributing to our understanding of the planets outside our solar system, and revealing how life may have originated.

Russell Hemley | EurekAlert!
Further information:
http://www.carnegieinstitution.org/

More articles from Earth Sciences:

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

nachricht Drones survey African wildlife
11.07.2018 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>