Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic expedition will investigate alien-like glacier

14.06.2006
Unusual sulfur springs on Ellesmere Island suggests how live may evolve on other planets

A scientific expedition to a remote glacier field in Canada's High Arctic may help researchers unlock the secrets about the beginning of life and provide insights for future exploration of our solar system.

A team assembled by the University of Calgary's Arctic Institute of North America plans to spend two weeks studying a sulfur-spewing spring on the surface of an ice field not far from the North Pole this summer, after it was discovered by Institute Executive Director Dr. Benoit Beauchamp during his travels in the area. Beauchamp, U of C adjunct professor Dr. Steve Grasby from the Geological Survey of Canada, and two graduate students will conduct the first extensive study of the spring after initial tests showed the geological oddity is home to a unique form of bacteria that has adapted to thrive in a cold and sulfur-rich environment.

"We really want to try and understand the plumbing system for this spring and where all this sulfur is coming from," Beauchamp said. "This is a very unusual feature on the earth's surface and it's an extreme ecosystem that could be a good model for how life first begins in a harsh environment."

The spring has also attracted the attention of the Canadian Space Agency and NASA, which are helping to fund the expedition, because it likely provides the best example on Earth for the conditions believed to exist on the surface of Jupiter's moon Europa. Ice-covered Europa is considered one of the best candidates for finding evidence of life on other planets within our solar system. Sending a probe to the planet is high on NASA's list of possible projects. Graduate student Damhnait Gleeson from the University Colorado, on a project sponsored by NASA's Jet Propulsion Laboratory, will be taking part in the study to determine if it will be worthwhile testing spacecraft and remote-control rover equipment on the glacier in the future.

"These are exciting times for planetary exploration in Canada, said Dr. Alain Berinstain, Director of Planetary Exploration and Space Astronomy at the Canadian Space Agency (CSA). "With the development of the Canadian Analogue Research Network (CARN) by the CSA, there are more opportunities than ever for Canadian researchers to further our understanding of other planets by studying analogues sites on Earth," Berinstain said. "These sulfur springs in the Arctic may just put us one step closer to answering that age old question: are we alone in the Universe?"

Beauchamp discovered the spring in the mid-1990s when he noticed a yellow stain on the snow while passing over the Borup Fiord Pass in a helicopter. He eventually visited the site and noticed the strong smell of rotten eggs that indicated the presence of sulfur. Grasby then visited the in 1999 and 2001 and collected samples of the water and mineral deposits from the spring, which contained new forms of bacteria and an extremely rare mineral known as vaterite.

Sulfur-loving organisms have been found living in extremely hot water around geothermal vents deep in the ocean floor but are seldom observed living in cold environments.

Beauchamp, Grasby, Gleeson and U of C graduate student Marie-Eve Caron leave for the glacier on June 21. From Ottawa, they will fly to Resolute, where they will be flown to the Eureka research station via Twin Otter airplane. The team will then reach the glacier by helicopter and set up a small camp near the base of the glacier where they will study the spring and acquire numerous water, mineral and rock samples.

Grady Semmens | EurekAlert!
Further information:
http://www.ucalgary.ca
http://www.arctic.ucalgary.ca

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>