Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space shuttle Columbia’s last flight formed clouds over Antarctica

07.07.2005


A burst of mesospheric cloud activity over Antarctica in January 2003 was caused by the exhaust plume of the space shuttle Columbia during its final flight, reports a team of scientists who studied satellite and ground-based data from three different experiments. The data also call into question the role these clouds may play in monitoring global climate change.



"Our analysis shows that the Columbia’s exhaust plume approached the South Pole three days after launch," said Michael H. Stevens, a scientist at the Naval Research Laboratory and lead author of a paper scheduled to be published in the July issue of the journal Geophysical Research Letters. "The lower temperatures and high concentrations of water vapor over Antarctica caused a significant increase in polar mesospheric cloud activity."

Polar mesospheric clouds are the highest on Earth, forming at an altitude of about 52 miles. They normally form when temperatures fall below minus 125 degrees Celsius.


"Because the brightness, occurrence and range of the clouds have been increasing, some scientists have suggested that these clouds are indicators of global climate change," said Xinzhao Chu, a research scientist at the University of Illinois at Urbana-Champaign and a co-author of the paper. "That role needs to be reconsidered, however, because of the potential influence of water vapor in shuttle plumes."

On Jan. 16, 2003, the Columbia lifted from Kennedy Space Center on its final flight before the loss of the crew and orbiter 16 days later. As with previous shuttle launches, the orbiter released about 400 tons of water -- the primary product of the liquid hydrogen and liquid oxygen fuel -- while flying nearly horizontally at an altitude of 68 miles. The resulting plume was about 2 miles in diameter and about 650 miles long.

"The plume was detected and tracked by the Global Ultraviolet Imager on NASA’s Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics satellite," Stevens said. "The GUVI images reveal rapid movement of the shuttle plume toward the South Pole."

At the Rothera Research Station in Antarctica, Chu was measuring upper altitude iron densities and polar mesospheric clouds using a special lidar system designed by Illinois and operated in collaboration with the British Antarctic Survey. Three days after the launch, the lidar detected iron in the atmosphere at altitudes much higher than usual.

"In addition to a persistent layer of iron near an altitude of 56 miles, produced from ablating meteoroids entering Earth’s atmosphere, three anomalous iron features were found at altitudes between 64 and 71 miles," Chu said.

Too high to be caused by meteoroids, these iron features originated in the shuttle plume, the researchers report, and had been produced by the normal ablation of main engine components during launch.

"Within the next two weeks we measured almost all of the polar mesospheric clouds we were to see that season," Chu said. "Only four hours of cloud observations were recorded before mid-January. From January 19-26, however, 18 hours of cloud observations were recorded." The increase in polar mesospheric clouds was also observed with the Solar Backscatter Ultraviolet instrument on the NOAA-16 satellite. Additional evidence that the shuttle plume was responsible for the burst of cloud activity can be found in the mesopause temperature, inferred from the iron observations near an altitude of 56 miles, the researchers report. At Rothera, the mesopause temperature was minus 120 degrees Celsius, which is too warm for polar mesospheric clouds to form under typical water vapor concentrations. By dumping so much water vapor into the mesosphere, the shuttle raised the concentration enough to allow the clouds to form.

"Our data will force scientists to rethink the role of polar mesospheric clouds in monitoring global climate change," Stevens said. "Any interpretation of recent trends in cloud activity must consider the potential influence of the space shuttle program."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>